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Motivating Examples: Networked Data

> Huge data sets are generated in networks (transportation, biological, brain,
computer, social networks)

» Data structure carries critical information about the nature of the data

» Modelling the data structure using graphs

Interpolate a brain signal Compress a signal in Localize the
from local observations an irregular domain source of a rumor
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Smooth an observed Predict the evolutionof a Infer the topology where
network profile network process the signals reside



Graph Signal Processing (GSP)

» Consider an undirected weighted graph G(V, &, W)
=V, £, W — set of nodes, edges, weights

» Associated with G — Graph-Shift Operator (GSO)
= SeRVN S, £0fori=jand (i,j) €E J' l;
= Ex: Adjacency A, LaplacianL=D —A... \

» Define a signal x € R" on top of the graph T l

= x; = value of graph signal (GS) at node i

» Sometimes the graph is not enough to explain the data structure
= Need for structures more complex than a graph
= Use Simplicial Complexes (SCs)



What is a Simplicial Complex?

» Mathematical structure that generalizes the
concept of a graph to higher dimensions

» Building blocks 0-simplex
= Vertices, edges, triangles, tetrahedra, etc 1-simplex

le

» Graphs as 1-dimensional simplicial complexes

. L 2-simplex
» Social structure, simplicial complex P

‘v 3-simplex Av
S
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Graph Learning: Motivation and Context

Network from nodal observations

“Given a collection X := [xy, ..., Xg] of graph signal observations
supported on the unknown graph G(V, &, A) find an optimal S”
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» This work:

= Use data to learn both, the graph and the higher-order interactions

= Modelling data and graph using Autoregressive Graph Volterra Models



Related work (I): Graph Learning

> Goal: use X=[xi,...,xg] ERV*R to learn S with £ = LXXT

> Correlation networks = X supported on G

S~¥=E [XXT} (S is a thresholded version of %)

> Partial correlation networks = X i.i.d. ~ NV(0,X) GL Graph

S = argmin — log(det(S)) + tr(£S) + ph(S)
5-0,5€5¢

> Graph-stationary diffusion processes=- X st. w.r.t S GSR

S =argmin |Slo s to £S=S%
ses

> Related to graphical Lasso:

Sparse SEM: S = argmin||X — SX||% + g(S)
ses



Related work (II): Learning higher-order interactions

P> Goal: use X and S to learn higher-order interactions
Simplicial complex

» Vietoris—Rips complex approach RC g'

= Form topological space from distances between points )
= Learn SCs from the data (i.e. £ = E[XXT])

» Learning SCs from data MTV-SC
= Specific nature edge data x; = BlT so + sy + Basy +w Hypergraph
= Learn SCs (B,) from edge data (X;) and graph (B1) p e\ N
» Learning hypergraphs from data HGSL 5

= Graph structure is learned from node data

= Hyperedges are obtained from the learned graph



Problem Formulation: Data Modelling

» Data Modelling: Autoregressive Graph Volterra Model of order 2

(D
X=HX+HY+V+E, with Y = XX e RV*R

. . . . 2 - .
H; e RV*N pairwise interactions, H, e RV*N" node-pair interactions
V € RVXR  exogenous variable, E € RV*R zero-mean white noise

e H;X is a linear combination of the signals in the other nodes

e H,Y is a product of the signals in the other tuples of nodes

» Example of signal representation in terms of H; and H,

Xp = H1[2, 1]X1 + H1[27 4]X4 + H2[27 (1, 4)]X1X4 + H2[27 (4, 1)]X1X4 + w + 6.
3
Part of x, is described by: L 5
= node-to-node interactions (H)

= node-to-pair interactions (H;)



Problem Formulation: Graph & SC Modelling

» Recalling the signal modelling
X=H;X+HY+V+E, withY=X0oX. >
» Graph Modelling: pairwise interactions Hj.

=>H1:{H1207810H1:0,H1:HI} 2 4
= Pos. weights, no self-loops (B;=1), symmetry.

» SC Modelling: node-to-pair interactions H,.
= Hy={H,>0,By0H, =0}

= Positive weights, no self-loops

H2 [(1,1)(1,2)(1,3)(1,4)(1,5)(2,1)(2,2)(2,3)(2,4)(2,5)(3,1)(3,2) (3,3)/(3,4) (3,5)/(4,1) (4,2) (4,3) (4,4) (4,5) (5,1)(5,2) (5,3) (5,4) (5,5)

Vb w|N|e




Proposed Approach

Proposed formulation for learning graphs and simplicial complexes

(Hi,Ho) = argmin IX—H:X—H,Y V|7 + o|H1]l1 + 8]|Hallx
H1€H1,H2€H2

8. t. Hak, (i, /)] < 61(Hy[k, iH1[k, j]H.[i, j]);

= || X—H;X—H,Y—V||%2 — Fitting X to the considered model
= ||H1|]1 — Controlling the number of node-to-node interactions with «
= ||H2||1 — Controlling the number of node-to-pair interactions with §
= Halk, (i,j)] < 01(H1lk, i]H1[k, j]H1[i,j])
— Filled triangle can exist if nodes /, j, and k are interconnected
» Non-convex formulation because of the trilinear constraint
= Next — convex formulation to address non-convexities



Proposed Convex Approach

Convex formulation for learning graphs and simplicial complexes

(H1,Hz) = argmin  [X — HiX — HoY — V|2 + a|[Hy|; + B[|Ha2|1
HieH1,HeHo

N
+v > 11QWH9 o [Hy, Hy)|lF
b=l

> Entries of binary matrix QU4:K) € RVN*(N+N°) inyolving three nodes

= Node-node interactions = Node-pair interactions
QUi j] =1 QUK Nj + k] =1
QUSRI k] =1 QUK Ni + k] =1
Q(i,j,k)[jy k=1 Q(I’J7k)[k7 Ni+j]=1

» Group entries of H; and H» that participate in a triangle using Q(/¥:¥)

» Controlling the number of filled triangles (H,) with 8
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Synthetic Data Results

> Estimation performance (err(H;)) of different algorithms as R increases

f-=-0--0--90--90-=-0--0--0

A-GL-V
-#GSR-V
-=-HGSL-V
-©-VGR-V (ours)
A-GL-noV
~#-GSR-noV
-1-HGSL-noV |
-0-VGR-noV (ours)

10-2 L

Normalized mean error for H;

50 100 150 200 250 300 350 400
(a) Number of samples

» Normalized error when estimating filled triangles (err(H>))

Alg. \ R 50 100 200 300 400 500

MTV-SC 1.505 1.496 1.497 1.493 1.494 1.490
RC 0.790 0.767 0.761 0.753 0.748 0.751
VGR 0.559 0.428 0.294 0.214 0.165 0.133




Real Data Results

> Estimation performance (F-score) of different algorithms as N increases
09

A-GL - GSR -5-HGSL +RC -©-VGR (ours) |
0851

05
15 20 25
(b) Number of nodes
» F-score and err(H,) when estimating filled triangles
F-score I Error
Alg \N | 15 20 % | 15 20 25
MTV-SC 0.093 0.058 0.056 7.418 7.536 7.530
RC 0.667 0.650 0.585 1.350 2.101 2.837
VGR 0.718 0.676 0.625 0.548 0.558 0.649
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Conclusions

» New scheme that jointly learns graphs and simplicial complexes

v

Key assumptions:
= Model data using autoregressive graph Volterra models
= Model network as graph (H1) and simplicial complexes (H»)

v

Jointly learn from data node-pair interactions and filled triangles

v

Challenge: non-convex approach due to filled triangle modelling
= Convex approach using group sparsity term
» Encouraging results in both synthetic and real data sets

» THANKS!
= Feel free to contact me for questions and code andrei.buciulea@urijc.es
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