Learning Graphs and Simplicial Complexes from Data

Andrei Buciulea

Joint work with E. Isufi, G. Leus and A. G. Marques

April 17, ICASSP 2024

Universidad Rey Juan Carlos

A. Buciulea

Motivating Examples: Networked Data

- ► Huge data sets are generated in networks (transportation, biological, brain, computer, social networks)
- Data structure carries critical information about the nature of the data
- ► Modelling the data structure using graphs

Graph Signal Processing (GSP)

- Consider an undirected weighted graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$
 - $\Rightarrow \mathcal{V}$, \mathcal{E} , $\mathcal{W} \to \mathsf{set}$ of nodes, edges, weights
- ▶ Associated with \mathcal{G} → *Graph-Shift Operator* (GSO)

$$\Rightarrow$$
 S $\in \mathbb{R}^{N \times N}$, $S_{ij} \neq 0$ for $i = j$ and $(i, j) \in \mathcal{E}$

$$\Rightarrow x_i = \text{value of graph signal (GS) at node } i$$

- ► Sometimes the graph is not enough to explain the data structure
 - ⇒ Need for structures more complex than a graph
 - ⇒ Use Simplicial Complexes (SCs)

What is a Simplicial Complex?

- Mathematical structure that generalizes the concept of a graph to higher dimensions
- Building blocks
 - ⇒ Vertices, edges, triangles, tetrahedra, etc
- ► Graphs as 1-dimensional simplicial complexes
- ► Social structure, simplicial complex

Graph Learning: Motivation and Context

Network

topology inference from nodal observations

"Given a collection $\mathbf{X} := [\mathbf{x}_1, ..., \mathbf{x}_R]$ of graph signal observations supported on the unknown graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathbf{A})$ find an optimal \mathbf{S} "

► This work:

- ⇒ Use data to learn both, the graph and the higher-order interactions
- ⇒ Modelling data and graph using Autoregressive Graph Volterra Models

Related work (I): Graph Learning

- ► Goal: use $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_R] \in \mathbb{R}^{N \times R}$ to learn \mathbf{S} with $\hat{\mathbf{\Sigma}} = \frac{1}{R} \mathbf{X} \mathbf{X}^T$
 - **Correlation networks** \Rightarrow **X** supported on \mathcal{G}

$$\hat{\mathbf{S}} pprox \hat{oldsymbol{\Sigma}} = \mathbb{E}\left[\mathbf{X}\mathbf{X}^\mathsf{T}
ight] (\hat{\mathbf{S}} ext{ is a thresholded version of } \hat{oldsymbol{\Sigma}})$$

▶ Partial correlation networks \Rightarrow X i.i.d. $\sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ GL

$$\hat{\mathbf{S}} = \underset{\mathbf{S} \succeq 0, \mathbf{S} \in \mathcal{S}_{\boldsymbol{\Theta}}}{\operatorname{argmin}} - \log(\det(\mathbf{S})) + \operatorname{tr}(\hat{\mathbf{\Sigma}}\mathbf{S}) + \rho h(\mathbf{S})[\operatorname{Fr.08}]$$

► Graph-stationary diffusion processes ⇒ X st. w.r.t S GSR

$$\hat{\mathbf{S}} = \underset{\mathbf{S} \in \mathcal{S}}{\operatorname{argmin}} \|\mathbf{S}\|_{0}$$
 s. to $\hat{\mathbf{\Sigma}}\mathbf{S} = \mathbf{S}\hat{\mathbf{\Sigma}}$ [Segarra17]

Related to graphical Lasso:

Sparse SEM:
$$\hat{S} = \underset{S \in \mathcal{S}}{\operatorname{argmin}} \|X - SX\|_F^2 + g(S)$$
[Bazerque13]

Related work (II): Learning higher-order interactions

- ► Goal: use **X** and **S** to learn higher-order interactions
- ► Vietoris-Rips complex approach [Zomorodian10] RC
 - \Rightarrow Form topological space from distances between points
 - \Rightarrow Learn SCs from the data (i.e. $\hat{\Sigma} = \mathbb{E} [XX^T]$)
- ► Learning SCs from data [Barbarossa20] MTV-SC
 - \Rightarrow Specific nature edge data $\mathbf{x}_1 = \mathbf{B}_1^{\top} \mathbf{s}_0 + \mathbf{s}_H + \mathbf{B}_2 \mathbf{s}_2 + \mathbf{w}$
 - \Rightarrow Learn SCs (B_2) from edge data (X_1) and graph (B_1)
- ► Learning hypergraphs from data [Tang23] HGSL
 - ⇒ Graph structure is learned from node data
 - ⇒ Hyperedges are obtained from the learned graph

Problem Formulation: Data Modelling

▶ Data Modelling: Autoregressive Graph Volterra Model of order 2

$$X = H_1X + H_2Y + V + E$$
, with $Y = X \odot X \in \mathbb{R}^{N^2 \times R}$

 $\mathbf{H_1} \in \mathbb{R}^{N \times N}$ pairwise interactions, $\mathbf{H_2} \in \mathbb{R}^{N \times N^2}$ node-pair interactions $\mathbf{V} \in \mathbb{R}^{N \times R}$ exogenous variable, $\mathbf{E} \in \mathbb{R}^{N \times R}$ zero-mean white noise

- H₁X is a linear combination of the signals in the other nodes
- H₂Y is a product of the signals in the other tuples of nodes
- Example of signal representation in terms of H₁ and H₂

$$x_2 = \mathbf{H}_1[2,1]x_1 + \mathbf{H}_1[2,4]x_4 + \mathbf{H}_2[2,(1,4)]x_1x_4 + \mathbf{H}_2[2,(4,1)]x_1x_4 + v_2 + e_2.$$

Part of x_2 is described by:

- \Rightarrow **node-to-node** interactions (H_1)
- \Rightarrow node-to-pair interactions (H_2)

Problem Formulation: Graph & SC Modelling

► Recalling the signal modelling

$$\textbf{X} = \textbf{H}_1\textbf{X} + \textbf{H}_2\textbf{Y} + \textbf{V} + \textbf{E}, \text{ with } \textbf{Y} = \textbf{X} \odot \textbf{X}.$$

$$\Rightarrow \mathcal{H}_1 = \{ \mathbf{H_1} \geq \mathbf{0}, \mathbf{B_1} \circ \mathbf{H_1} = \mathbf{0}, \ \mathbf{H_1} = \mathbf{H_1^{\top}} \}$$

 \Rightarrow Pos. weights, no self-loops ($B_1 = I$), symmetry.

► SC Modelling: node-to-pair interactions H₂.

$$\Rightarrow \mathcal{H}_2 = \{ \mathbf{H_2} \geq \mathbf{0}, \mathbf{B_2} \circ \mathbf{H_2} = \mathbf{0} \}$$

⇒ Positive weights, no self-loops

H2	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)
1																									
2																									
3																									
4																									
5																									

Proposed Approach

Proposed formulation for learning graphs and simplicial complexes

$$\begin{split} &(\hat{\mathbf{H}}_1,\hat{\mathbf{H}}_2) = \underset{\mathbf{H}_1 \in \mathcal{H}_1, \mathbf{H}_2 \in \mathcal{H}_2}{\operatorname{argmin}} & \|\mathbf{X} - \mathbf{H}_1 \mathbf{X} - \mathbf{H}_2 \mathbf{Y} - \mathbf{V}\|_F^2 + \alpha \|\mathbf{H}_1\|_1 + \beta \|\mathbf{H}_2\|_1 \\ & \text{s. t.} & \mathbf{H}_2[k,(i,j)] \leq \theta \mathbb{1}(\mathbf{H}_1[k,i]\mathbf{H}_1[k,j]\mathbf{H}_1[i,j]); \end{split}$$

- $\Rightarrow \|\mathbf{X} \mathbf{H}_1 \mathbf{X} \mathbf{H}_2 \mathbf{Y} \mathbf{V}\|_F^2 \rightarrow \text{Fitting } \mathbf{X} \text{ to the considered model}$
- $\Rightarrow \|\mathbf{H_1}\|_1 \rightarrow$ Controlling the number of node-to-node interactions with α
- $\Rightarrow \|\mathbf{H}_2\|_1 \rightarrow \text{Controlling the number of node-to-pair interactions with } \beta$
- $\Rightarrow \ \mathbf{H_2}[k,(i,j)] \le \theta \mathbb{1}(\mathbf{H_1}[k,i]\mathbf{H_1}[k,j]\mathbf{H_1}[i,j])$
 - \rightarrow Filled triangle can exist if nodes i, j, and k are interconnected
- ▶ Non-convex formulation because of the trilinear constraint
 - \Rightarrow Next \rightarrow convex formulation to address non-convexities

Proposed Convex Approach

Convex formulation for learning graphs and simplicial complexes

$$\begin{split} (\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}) &= \underset{\mathbf{H}_{1} \in \mathcal{H}_{1}, \mathbf{H}_{2} \in \mathcal{H}_{2}}{\operatorname{argmin}} \|\mathbf{X} - \mathbf{H}_{1}\mathbf{X} - \mathbf{H}_{2}\mathbf{Y} - \mathbf{V}\|_{F}^{2} + \alpha \|\mathbf{H}_{1}\|_{1} + \beta \|\mathbf{H}_{2}\|_{1} \\ &+ \gamma \sum_{i \ i \ k = 1}^{N} \|\mathbf{Q}^{(i,j,k)} \circ [\mathbf{H}_{1}, \mathbf{H}_{2}]\|_{F} \end{split}$$

- ► Entries of binary matrix $\mathbf{Q}^{(i,j,k)} \in \mathbb{R}^{N \times (N+N^2)}$ involving three nodes
- ⇒ Node-node interactions

$$\mathbf{Q}^{(i,j,k)}[i,j] = 1$$

 $\mathbf{Q}^{(i,j,k)}[i,k] = 1$
 $\mathbf{Q}^{(i,j,k)}[i,k] = 1$

⇒ Node-pair interactions

$$\mathbf{Q}^{(i,j,k)}[i, Nj + k] = 1
\mathbf{Q}^{(i,j,k)}[j, Ni + k] = 1
\mathbf{Q}^{(i,j,k)}[k, Ni + j] = 1$$

- ▶ Group entries of H_1 and H_2 that participate in a triangle using $Q^{(i,j,k)}$
- ▶ Controlling the number of filled triangles (H_2) with β

Synthetic Data Results

Estimation performance $(err(H_1))$ of different algorithms as R increases

► Normalized error when estimating filled triangles (err(H₂))

Alg. \ R	50	100	200	300	400	500
MTV-SC	1.505	1.496	1.497	1.493	1.494	1.490
RC	0.790	0.767	0.761	0.753	0.748	0.751
VGR	0.559	0.428	0.294	0.214	0.165	0.133

Real Data Results

► Estimation performance (F-score) of different algorithms as *N* increases

 \triangleright F-score and $err(H_2)$ when estimating filled triangles

	F-sco	Error					
Alg. \ N	15	20	25	15	20	25	
MTV-SC	0.093	0.058	0.056	7.418	7.536	7.530	
RC	0.667	0.650	0.585	1.350	2.101	2.837	
VGR	0.718	0.676	0.625	0.548	0.558	0.649	

Conclusions

- ▶ New scheme that jointly learns graphs and simplicial complexes
- ► Key assumptions:
 - ⇒ Model data using autoregressive graph Volterra models
 - \Rightarrow Model network as graph (H_1) and simplicial complexes (H_2)
- ▶ Jointly learn from data node-pair interactions and filled triangles
- Challenge: non-convex approach due to filled triangle modelling
 - ⇒ Convex approach using group sparsity term
- Encouraging results in both synthetic and real data sets

► THANKS!

⇒ Feel free to contact me for questions and code andrei.buciulea@urjc.es