On-Device Constrained Self-Supervised Learning for Keyword Spotting via Quantization Aware Pre-Training and Fine-Tuning

Gene-Ping Yang, Yue Gu, Sashank Macha, Qingming Tang, Yuzong Liu

University of Edinburgh, Amazon

- Large self-supervised models are primary building blocks for speech foundation models.
 - Google USM (BestRQ): 0.6B / 2B
 - SeemlessM4T (w2v-BERT): 1.2B / 2.3B
 - AudioPaLM (w2v-BERT): 8B

¹Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages

Limitation for on-device application

- Due to substantial memory footprint, deploying these large models on edge devices is impractical.
- The need for a continuous internet connection and potential network latency are limitations when accessing these models through cloud APIs.

Methodology 000000 Experiments

Setting

Motivation

- Our goal is to develop a tiny speech foundation model, which can be a better initialization for various downstream tasks requiring restricted memory footprint.
 - Achieved through knowledge distillation by reducing model width and depth¹.
 - Reduce the **bit size** of model weights and activations.

 \rightarrow Quantized self-superivsed models via quantization aware self-supervised training (QAT).

¹On-Device Constrained Self-Supervised Speech Representation Learning for Keyword Spotting via Knowledge Distillation, Yang et al., Interspeech 2023

On-Device Constrained Self-Supervised Learning for Keyword Spotting via Quantization Aware Pre-Training and Fine-Tuning

Fixed Point Quantization

- 32-bit floating point \rightarrow 8-bit fixed point integer (INT8)
- Value set for 8-bit consists of 2⁸ values:
 - $\{0, 1, 2, ..., 254, 255\}$
 - linear transformation: $\{-1, -\frac{255}{256}, -\frac{254}{256}, ..., -\frac{1}{256}, 0, \frac{1}{256}, ..., \frac{254}{256}, \frac{255}{256}\}$

 $^{^1\}mathsf{Fixed}\text{-point}$ quantization aware training for on-device keyword-spotting, Macha et al., ICASSP 2023

On-Device Constrained Self-Supervised Learning for Keyword Spotting via Quantization Aware Pre-Training and Fine-Tuning

Fixed Point Quantization

- Pros
 - INT8 multiplications consumes 18.5x less energy and half the memory compared to FP32
 - INT8 model size is 4x less
- Cons
 - Training with INT8 is significantly slow (on FPGA)
 - Direct post training quantization (PTQ) from FP32 to INT8 cause severe information loss

 $^{^1\}mathsf{Fixed}\text{-point}$ quantization aware training for on-device keyword-spotting, Macha et al., ICASSP 2023

Quantization Aware Training (QAT)

- Forward Quantization
 - Forward pass: simulate 8-bit operation
 - Gradient: 32-bit
- Soft Quantization
 - Forward pass: 32-bit
 - Additional loss represents the discrepancy between the entries in a 32-bit weight matrix and their counterparts when quantized according to a specified fixed-point (FXP) scheme.

Soft Quantization - ACR

- Absolute Cosine Regularization (ACR)¹
 - $L_{ACR} = -\sum_i |cos(\pi fw_i)|$
 - The peaks resemble the FXP value set
 - If a model weight aligns with one of the peak, the gradient is 0

¹Quantization Aware Training with Absolute-Cosine Regularization for Automatic Speech Recognition

Input and Activation Quantization

- Min-max scaling¹ (under linear operation)
- Quantize A into full INT8 range [0, 255]

$$A_{\rm INT8} = \left[(A - \underline{A_{min}}_{\rm shift}) \frac{255}{\underline{A_{max} - A_{min}}_{\rm scale}} \right]$$

• De-Quantize into original dynamic range (256 values)

$$A_{\text{DeINT8}} = \left[(A - A_{min}) \frac{255}{A_{max} - A_{min}} \right] \times \frac{A_{max} - A_{min}}{255} + A_{min}$$

¹LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, NeurIPS 2022 On-Device Constrained Self-Supervised Learning for Keyword Spotting via Quantization Aware Pre-Training and Fine-Tuning

Input and Activation Quantization

- Dynamic scaling quantization (Vector-wise quantization^{1,2})
 - View matrix multiplication as independent inner products
 - Assign different scaling constant c_a to each row of A and c_w each column of W

¹LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, NeurIPS 2022 ²8-bit Optimizers via Block-wise Quantization, Dettmers et al., ICLR 2022

Overview

- Problem Setup
 - Train models under FP32 while being aware of INT8 scheme (Quantization Aware Training, QAT)
- Scientific Questions
 - How does QAT affect the expressiveness of self-supervised models?
 - Which QAT technique and scheme is best for self-supervised stage and fine-tuning stage?

Methodology

Experiments

Diagram of our QAT Transformer

- Self-supervised Learning with QAT: $L_{SSL_QAT} = L_{SSL} + \alpha L_{ACR}$
- Downstream fine-tuning with QAT: $L_{DS_QAT} = L_{DS} + \alpha L_{ACR}$

Experiment setup

- Train set: 16.6k hours of de-identified audio recording
- Test set: 85 hours of clean and noisy condition
- Self-supervised Methods: Autoregressive Predictive Coding¹
- Downstream: Keyword Spotting

¹Autoregressive predictive coding: A comprehensive study, Yang et al., JSTSP 2022 On-Device Constrained Self-Supervised Learning for Keyword Spotting via Quantization Aware Pre-Training and Fine-Tuning

Model Architecture

- 3-layer transformer, with 4 attention heads and 128 hidden dimension
- 400K parameters, where 99.8% of the parameters will be quantized (both weights and biases)

$\mathsf{S3RL}\;\mathsf{QAT}\;+\;\mathsf{KWS}\;\mathsf{QAT}$

	S3RL	KWS	Final Precision	Relati Normal	ive FAR Playback
(1)	FP	FP	w32a32	1.0	1.0
(3)	FP	FP	w8a8 _{Dyn}	1.39	1.32
(5)	ACR+Dyn	ACR+Dyn	w8a8 _{Dyn}	1.86	1.75
(9)	Dyn	Dyn	w8a8 _{Dyn}	1.02	1.01

 1 S3RL = Self-Supervised Speech Representation Learning

What happen after ACR quantization?

Quantization Utilization

• Efficiency: percentage of the quantized value set being used

Setup	Training	Zeros ↓	Efficiency ↑	Compression \downarrow
KWS	FP	4.7%	41.8%	23.8%
S3RL + KWS	FP	4.3%	51.2%	23.9%

Figure: Average percentage over all quantized model weights

Quantization Utilization

• Efficiency: percentage of the quantized value set being used

Setup	Training	Zeros ↓	Efficiency ↑	Compression \downarrow
KWS	FP Dyn	4.7% 3.7%	41.8% 48.4%	23.8% 24.1%
S3RL + KWS	FP Dyn	4.3% 3.7%	51.2% 53.5%	23.9% 24.1%

Figure: Average percentage over all quantized model weights

Quantization Utilization

• Efficiency: percentage of the quantized value set being used

Setup	Training	Zeros ↓	Efficiency ↑	Compression \downarrow
KWS	FP	4.7%	41.8%	23.8%
	Dyn	3.7%	48.4%	24.1%
	ACR + Dyn	11.0%	20.0%	22.2%
S3RL	FP	4.3%	51.2%	23.9%
+	Dyn	3.7%	53.5%	24.1%
KWS	ACR + Dyn	11.0%	20.5%	22.3%

Figure: Average percentage over all quantized model weights

Summary

- We proposed QAT with no restriction on model weights and dynamic quantization on activations, achieving superior performance among various QAT methods.
- ACR is excessively restrictive for model weights, primarily due to the normal distribution pattern of the weights, pushing model weights toward 0.
- A combination of dynamic quantization on activations without ACR yields the best results, with performance comparable to the 32-bit model in an 8-bit setting.
- Self-supervised pre-training improves the effectiveness of using quantized values, as opposed to models without pre-training.