Learning with Non-Uniform Label Noise: A Cluster-Dependent Weakly Supervised Approach Mengtian Zhang, Bo Jiang, Yuye Ling, Xinbing Wang **Shanghai Jiao Tong University**

Motivation & Introduction

- The successes of current DNNs heavily rely on the precisely labeled data. However,
 - The average ratio of corrupted labels in real-world datasets range from 8.0% to 38.5% [Song et al., 2022].
 - The local noise rates inside the real dataset can vary greatly, e.g. from 25% to 70%.
- Existing works explicitly or implicitly rely on the assumption of uniform label noise.
 - The methods of **class-dependent transition matrix** assume all samples in same class share same noise rate.
 - With the implicit assumption of uniform noise rate, the methods of small-loss trick would select simple patterns first and regard most samples in the hard regions as corrupt data.
- Besides, the methods of **instance-dependent noise** need additional information or extra assumption.
- In this paper, we consider robust learning with non-uniform label noise that requires no

additional information or assumption.

Methodology: ClusterCL

- **Feature extraction.** Embedded sample features would be extracted using the current trained model.
- **Clustering.** K-Means (or any other clustering method) is employed to group samples in the feature space.

- **Training** for one epoch with hybrid losses.
 - Supervised cross-entropy loss:

$$\mathcal{L}_{sup} = \mathcal{L}_{mixup}(x', y') + \mathcal{L}_{fmix}(x'', y'') = \mathcal{L}_{CE}(x', y') + \mathcal{L}_{CE}(x'', y'')$$
(1)

unsupervised contrastive loss:

$$N \qquad N \qquad \text{orres} \left(-\frac{1}{2} -\frac{1}{2} \right)$$

Cluster-dependent sample selection.

- 2-dimension Gaussian Mixture Models are employed on the loss distributions.
- Small-loss criteria are adopted to select clean samples for each cluster separately.
- Note: the above four steps would be looped for epochs.

Results of Classification Accuracy

Human annotated label noise on CIFAR-N datasets [Wei et al., 2022].

CIFAR-N datasets provide realistic noisy labels, with noisy rate aggregate 9.03%, random-1 17.23%, Worst 40.21%, and fine 40.20%.

Methods	C	FAR-1	CIFAR-100N		
	Aggr	Rand1	Worst	Fine	
CE (Standard)	89.87	84.15	76.86	55.96	
T-Revision	89.39	87.99	82.10	54.45	
PTD	89.93	89.83	80.16	16.01	
ELR+	94.81	94.54	90.89	67.04	
DivideMix	95.15	95.12	92.71	71.13	
ProMix	96.83	<u>96.17</u>	94.05	70.54	
SOP	95.61	95.28	93.24	67.81	

ClusterCL(ours) **96.86 96.29 94.13** 71.87

$\mathcal{L}_{CL} = \sum_{i=1}^{N} l_{CL}(i) = -\sum_{i=1}^{N} \log \frac{\exp((z_i \cdot z_i^+/t))}{\sum_{i=1}^{K} (z_i \cdot z_i/t)}$

Overall training loss:

$$\mathcal{L}_{total} = \mathcal{L}_{sup} + \lambda \mathcal{L}_{CL}$$

(3)

(2)

Results of Sample Selection

Visualization comparison. Color blue and orange are two selected clusters, with noisy rate 21.1% and 60.8% respectively.

(c) Baseline Method (d) ClusterCL(ours) (a) Loss Distribution (b) Ground Truth

Precision (%), Recall (%), and F1-score (%) in the clean sample selection step on CIFAR-10 Worst dataset with 5000 training samples.

> **Precision Recall F1-score** Methods

Methods	CIFAR-10N ($\tau \approx 40\%$)						
	N = 500	2000	5000	10000	20000	40000	50000
CE (Standard)	32.54	41.05	49.58	58.61	63.84	74.33	76.86
T-Revision	28.54	29.64	32.69	63.47	77.37	80.66	82.10
PTD	18.99	26.59	39.01	65.85	66.69	70.97	80.16
ELR+	38.39	56.29	67.24	75.26	84.30	89.77	90.89
DivideMix	36.52	58.43	70.03	77.77	87.38	91.83	92.71
ProMix	34.96	58.15	69.75	77.95	88.06	<u>92.71</u>	94.05
SOP	37.21	54.68	67.43	75.15	85.52	91.88	93.24

ClusterCL(ours) 44.26 64.31 76.19 84.67 89.85 93.08 94.13

ClusterCL achieves highest accuracy, especially when the training set is small and the noise rate is high.

ClusterCL(ours)	89.04	88.45	88.74	
ProMix	89.19	82.03	85.46	
DivideMix	88.34	82.48	85.31	
CE (Standard)	59.02	100.0	74.22	

ClusterCL achieve slightly lower precision but much higher recall and thus higher F1-score.

Conclusion

- The paper propose a novel weakly supervised method for robust learning with non-uniform label noise.
- ClusterCL achieves the state-of-the-art performance on both synthetic and real-world datasets.

