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Context:

Synthetic Aperture RADAR
(SAR)

Active sensor

All-weather, day and
night

Complex labelling

High clutter and
geometric distortions

Multiplicative noise

Figure 1: Acquisition in X-band the 10th January 2020.
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Motivation

■ Different sensors, acquisition modalities
■ Can be general but we consider case bivariate: two polarizations
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Context:

Motivation: Pairwise classification of SAR images, bivariate.

Statistically based: Based on divergences [Cilingir et al., 2020], Wishart distributions
[Silva et al., 2013]

Pro: Explainability, small amount of data
Cons: Model assumption, quality of estimation

Model free: deep-learning, features extraction [Ansari et al., 2020] [Chen et al., 2016]
Pro: No model assumption, data driven
Cons: Lack of explainability, need a large amount of data or good labels, dealing
with the multiplicative noise of SAR images

Proposition
Combination of both approaches: using multiple proability models to extract features
(parameters of model) and to combine them using a combination-metric learned from
the data.
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Parametric SAR model and features 1/2

Let Ii,j be a pair of a j-variate patch of SAR images, iid. We construct the pair of vector of
features x̂i,j as follows:

x̂i,j = [θG(Ii,j), θO(Ii,j), θR(Ii,j)]
T
, ∀i, j

where θG(Ii,j), θO(Ii,j) and θR(Ii,j) are the parameters of the three following distributions
fitted on the amplitude of the SAR patch Ii,j.

Features

Gamma: G(x;µ,L) = e−
xL
µ ·
(

L
µ

)L
· Γ(L) · xL−1, with shape and scale L and µ,

log-normal: O(x;µ, σ) = e−
(log x−µ)2

2σ2 · 1
xσ

√
2π
, with mean µ and variance σ,

Rayleigh: R(x;µ) = x
2µ2 · e−( x

2µ )2
with scale µ,
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Parametric SAR model and features 2/2

From:
x̂i,j = [θG(Ii,j), θO(Ii,j), θR(Ii,j)]

T
, ∀i, j

We have:

X = (x1, x2) =

x̂1,1 x̂2,1
...

...
x̂1,J x̂2,J


We consider in the following the bivariate case (J = 2).
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Divergences i

Divergences
The Rényi divergence of order α between two probability distributions P,Q on Rn is
given by:

Dα(P∥Q) =
1

α− 1 ln

∫
P(x)αQ(x)1−αdx, (1)

with α > 0 and α ̸= 1.

Closed form for the Gamma, log-normal and Rayleigh distributions [Gil et al., 2013]:
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Divergences ii

• Gamma:

Dα(P∥Q) = ln

(
Γ (kj) θ

kj
j

Γ (ki) θ
ki
i

)
+

1
α− 1 ln

(
Γ (kα)
θki

i Γ (ki)

(
θiθj
θ∗α

)kα
)

θ∗α = αθj + (1 − a)θi, kα = αki + (1 − α)kj

θ∗α > 0 and kα > 0
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Divergences iii
• log-normal:

Dα(P∥Q) = ln
σj
σi

+
1

2(α− 1) ln
(

σ2
j

(σ2)
∗
α

)
+

1
2
α (µi − µj)

2

(σ2)
∗
α(

σ2)∗
α
= ασ2

j + (1 − α)σ2
i(

σ2)∗
α
> 0

• Rayleigh:

Dα(P∥Q) =2 ln σj
σi

+
1

α− 1 ln

(
σ2

j

(σ2)
∗
α

)
(
σ2)∗

α
= ασ2

j + (1 − α)σ2
i(

σ2)∗
α
> 0
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Pipeline: non parametric 1/2

X

f(X,α1)

wT
1 f + b1

divergences computation

combination

... m classes

f(X,αm)

wT
mf + bm

...

dc

σ(dc)

ŷi

Figure 2: Schema of the pipeline. Figure 3: Diagram of the divergence estimation
for one distribution.

Let f =
[
Dα1(x1

1, x1
2), ...,Dαp(x

p
1, x

p
2)
]T be a vector composed by a set of p Renyi

divergences with parameters α = [α1, . . . , αp]
T ∈ (0, 1)p.

For 3 distributions considered, the number of divergences is p = 3 ×
(i×j

2
)
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Pipeline: non parametric 2/2

For each class c, given a set of parameters αc we combine the divergences:

dc(X,αc) = wT
c f(X,αc) + bc, (2)

where wc ∈ Rp
+ and bc ∈ R+.

Explainability
p parameters αc for each class c.

constraints on αc ∈ (0, 1).

αc → 1, Dα(P∥Q) → KL(P∥Q).
αc → 0.5, Dα(P∥Q) homogeneous to
Bhattacharyya distance.

positive constraints on wc and bc.

X

f(X,α1)

wT
1 f + b1

divergences computation

combination

... m classes

f(X,αm)

wT
mf + bm

...

dc

σ(dc)

ŷi

Figure 4: Schema of the pipeline.

Close to [Cilingir et al., 2020], but more constrained.
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Minimization problem

We consider the cross-entropy loss: H(y, ŷ) = −
∑m

c yc log(ŷc), with ŷ, y ∈ Rm (the
prediction of a classifier and its associated ground truth) and σ the softmax function.
This gives us the following minimization problem:

argmin ∀c∈{1,...,m},
αc∈(0,1)p,

wc ∈Rp
+,bc∈R+

1
n

n∑
i=0

−
m∑
c

yi(c) log [σ ◦ dc(Xi,αc)]︸ ︷︷ ︸
Li

. (3)

Optimization
bc and wc are updated with a standard gradient descent.

we provide a closed form for the gradient of αc.
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Gradient of αc

Divergence derivate ∂Dα̂(·)/∂α(·)

Dα̂l(Gi∥Gj) eαl Liµj−Ljµi
λijβij

− eαlLi log
[
(eαl+1)µiµj

βij

]
− eαl log

[(
µi
Li

)−Li
Γ(λij)

Γ(Li)

]
+ eαl (Lj−Li)ψ

(0)(λij)
eαl+1

Dα̂l(Oi∥Oj)
eαl

2(eαlΣij)
2

[
eαlσ2

j (σ
2
j − σ2

i ) + σ2
i
[
(µi − µj)

2 − Σij
]
− (eαlΣij)

2
log
(

(eαl+1)σ2
j

eαlΣij

)]
Dα̂l(Ri∥Rj)

γij−eαlµ2
i

γij+µ2
i

−eαl log
[
γij+µ

2
j

γij+µ2
i

]
Table 1: Rényi’s derivate

with α̂ = 1/(1 − e−α) and:

λij = (eαlLi + Lj)/(1 + eαl),
βij = eαlLiµj + Ljµi,
Σij = σ2

j + σ2
i ,

γij = eαlµ2
j .
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Results

X-band SAR dataset dual-pol (HH, HV)

645 patches of 32x32 pixels

5 classes (glacier, city, forest, rock, plain) + 1 class
for the dissimilar

comparison with a CNN [Parikh et al., 2020] and a
Random Forest (RF)

for a bivariate pair with 3 distributions: 3 ×
(4

2
)
=18

divergences per class

RF CNN Rényi

input size 200 × 1 32 × 32 × 4 10 × 2
parameters ∼ 152, 000 226, 406 222

Table 2: Number of parameters and size of the inputs
used

ACC CIT DIS FOR PLA ROC

RF 65.3 ± 13.0 70.8 ± 9.2 82.7 ± 4.1 11.9 ± 1.2 33.6 ± 5.8 55.9 ± 9.0
CNN 83.5 ± 7.0 61.1 ± 16.5 82.9 ± 4.3 45.1 ± 8.1 49.5 ± 13.0 72.3 ± 1.2
Renyi 59.1 ± 11.1 83.2 ± 4.2 45.3 ± 1.2 80.5 ± 6.9 67.3 ± 3.7 62.7 ± 12.0

Table 3: Percentage of good classification with a stratified K-Fold with K=5
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Explanability
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Figure 5: α learned for each features and for each
classes.
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Figure 6: Visualisation of associated weights in the
decision process for each class.
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Robustness to noise

20 40 60 80

a. % of polluted labels

0:1

0:2

0:3

0:4

0:5

0:6

W
ei

gh
te

d
F1

sc
or

e

RF
CNN
Renyi

20 40 60 80

b. % of training data

RF
CNN
Renyi

1
Figure 7: Comparison of performance (mean of weighted f1 score over all class in function) of two1
perturbations, a. Percentage of label perturbation and b. Percentage of data training
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Conclusion
What we have done

New solution by joint use of parametric and non-parametric methods
Derivate the analytical gradient for three distributions wrt the Renyi parameter (learn-
ing)
Less parameters than traditional ML methods
Explainability of the classification and robustness to noise

What’s next?
Treat the case α > 1 and find a solution for α = 1.
Consider different distributions between pairs
Study convergence of gradient descent
Metric learning problems
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