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Introduction

> Federated Learning(FL)[1] - Revolutionized the area of machine
learning and data privacy.

» A significant challenge is unannotated/unlabeled data.

» Solution - unsupervised FL.

FEDERATED LEARNING |

[’Els.mﬁmu-g- @@_’C 43
Rggregated

s Clowd

) G 52

Expensive C¢ Systems. Statistical Privacy Concems

https://ml-ops.org/content/three-levels-of-ml-software.html
https://blog.ml.cmu.edu/2019/11/12 /federated-learning-challenges-methods-and-future-
directions/
April 18, 2024 3 /17



Introduction

> Representation learning - Popular way of unsupervised learning.
» Rich representations - important for downstream tasks.

» Variational Autoencoder(VAE)s are suitable for extracting
meaningful representations.

» VAE enables uncertainty quantification and reduces overfitting.
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Can we formulate a distributed VAE model to achieve federated
representation learning?
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Contributions

» An importance-sampling based federated variational autoencoder
framework: 1S-FedVAE

® Novel framework based on distributed evidence lower bound for VAE.
® Enables generating globally relevant samples at the clients.

» Robustness to FL attributes like statistical heterogeneity, local
epochs, and client participation.

» Demonstrated the effectiveness of samples for classification as a
downstream task.
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Preliminaries

VAE decoder-encoder parameters are inferred through ELBO over N
samples, where for a given sample x; we have

log po(xi) > Eq, (zx)[l0g pe(xi|z)]
— KL(q¢(z|x:)[lp(2)) = L(, 0; x;).
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Architecture

» Assumption: Global latent
distribution satisfies mean field
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Intuition

GENERAL ELBO :

log pe(xi) > Eq, (zix)[log pe(xi|z)] — KL(qs(xi|2)[|p(2)) = L(, 6; xi).

We rewrite the reconstruction error us- (
ing the importance sampling approach

KL divergence is computed as follows:
at each client as,
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Algorithm

Algorithm: IS-FedVAE: Importance Sampling based Federated Variational Autoencoder

Input: Dataset Dy at the k-th client, Number of communication rounds C, Number of local
epochs E, Learning rate 7, Initialize p(z) at all clients;

for C communication rounds do

At Server:

Combine all the q(’;(z\xk’,-) ;

Communicate g4 (z|xx) : to compute KLD and importance weights;

At Client:

for E epochs do
Vk € [K], sample mini-batch B, C Dy
Optimize at each client to obtain {6y, ¢} by computing the loss based on

importance-sampling based reconstruction loss along with KLD ;

Communicate qf;(z\xk,,-), Vi to the server;

end

end
Output: Per-client VAE: {60y, ¢} after C rounds.
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Experimental Settings

» Qualitative analysis of the representations.

» Main attributes of FL: Local epochs, Statistical heterogeneity, and
client participation.

» Comparison with baselines on the classification task.
® Evaluation - Linear probe.
® Metric - Accuracy.

» Datasets : CIFAR10, CIFAR100

» Data partitioning scheme: Dirichlet partitioning.

» Notations : E - Local epochs, « - Dirichlet parameter, K - No.of
Clients, C - Communication rounds.
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t-SNE and Scalability

+-SNE Visualization: 1S-FedVAE Scalability comparison on CIFAR100
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Figure 2: Left: t-SNE visualization of the latent space, Right: Scalability
comparison on CIFAR100 dataset.

» Representations are well separated.

» Scalable and achieves similar performance across settings.
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Accuracy : E,«
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Figure 3: Left: Epoch-wise test accuracies on CIFAR100, Right: Test
accuracies for varying levels of statistical heterogeneity

» Beneficial in scenarios where there are high communication costs or
computational constraints.

» |S-FedVAE is robust to varying levels of statistical heterogeneity.
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Covergence: Comparison with baselines
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Figure 4: Convergence of IS-FedVAE as compared to baseline methods for
C = 100 rounds.

» Faster convergence - addressing the challenge of communication
bottle-neck
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Accuracy: Comparison with baselines

| Methods [ CIFAR10 | CIFAR100 |
| ISFedVAE [ 7719 | 43.05 |

Orchestra [2] 70.64 35.64
fBYOL [3] | 66.18 38.88
f-SpecLoss [4] 64.53 35.99
f-SimSiam [5] | 61.95 36.02
fSimCLR [6] | 58.15 33.49

Top-1 accuracy (%) comparison under the Linear evaluation protocol for
statistically heterogeneous (o = 0.1) setting for CIFAR10 and CIFAR100
datasets.
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Conclusions

» We addressed a crucial problem of unsupervised federated
representation learning.

» Proposed the novel IS-FedVAE using a distributed ELBO
formulation.

» Demonstrated the robustness to FL attributes.
» Outperformed the state-of-the-art baselines.
» Future works
® Other methods to utilize latent distributions in a federated setting.

® improving representations to carry out specific downstream tasks.
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