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Introduction

▶ Federated Learning(FL)[1] - Revolutionized the area of machine
learning and data privacy.

▶ A significant challenge is unannotated/unlabeled data.

▶ Solution - unsupervised FL.

https://ml-ops.org/content/three-levels-of-ml-software.html

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-
directions/
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Introduction

▶ Representation learning - Popular way of unsupervised learning.

▶ Rich representations - important for downstream tasks.

▶ Variational Autoencoder(VAE)s are suitable for extracting
meaningful representations.

▶ VAE enables uncertainty quantification and reduces overfitting.

z

Can we formulate a distributed VAE model to achieve federated
representation learning?

By EugenioTL - Own work, CC BY-SA 4.0,
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Contributions

▶ An importance-sampling based federated variational autoencoder
framework: IS-FedVAE

• Novel framework based on distributed evidence lower bound for VAE.

• Enables generating globally relevant samples at the clients.

▶ Robustness to FL attributes like statistical heterogeneity, local
epochs, and client participation.

▶ Demonstrated the effectiveness of samples for classification as a
downstream task.
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Preliminaries

VAE decoder-encoder parameters are inferred through ELBO over N
samples, where for a given sample xi we have

log pθ(xi ) ≥ Eqϕ(z|xi )[log pθ(xi |z)]
− KL(qϕ(z|xi )||p(z)) = L(ϕ,θ; xi ).

z ∼ qφ(z|x) ∼ N(µ, σ2)

z

April 18, 2024 6 / 17



Architecture

▶ Assumption: Global latent
distribution satisfies mean field
decomposition.

▶ The optimal global variational
distribution
qϕ(z|xi ) ∼ N (µs,i , σ
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Intuition

GENERAL ELBO :

log pθ(xi ) ≥ Eqϕ(z|xi )[log pθ(xi |z)]− KL(qϕ(xi |z)||p(z)) = L(ϕ,θ; xi ).

We rewrite the reconstruction error us-
ing the importance sampling approach
at each client as,

Eqϕ(z|xk,i )[log p
k
θ(xk,i |z)]

= E
qk
ϕ

(z|xk,i )

[
qϕ(z|xi )

qk
ϕ

(z|xk,i )
log pk
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]
.

KL divergence is computed as follows:

KL(qϕ(z|xi )||p(z)) =
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Algorithm

Algorithm: IS-FedVAE: Importance Sampling based Federated Variational Autoencoder

Input: Dataset Dk at the k-th client, Number of communication rounds C , Number of local
epochs E , Learning rate η, Initialize p(z) at all clients;

for C communication rounds do
At Server:
Combine all the qk

ϕ(z|xk,i ) ;

Communicate qϕ(z|xk ) : to compute KLD and importance weights;
At Client:
for E epochs do

∀k ∈ [K ], sample mini-batch Bk ⊂ Dk

Optimize at each client to obtain {θk ,ϕk} by computing the loss based on
importance-sampling based reconstruction loss along with KLD ;

Communicate qk
ϕ(z|xk,i ), ∀i to the server;

end
end
Output: Per-client VAE: {θk ,ϕk} after C rounds.
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Experimental Settings

▶ Qualitative analysis of the representations.

▶ Main attributes of FL: Local epochs, Statistical heterogeneity, and
client participation.

▶ Comparison with baselines on the classification task.

• Evaluation - Linear probe.

• Metric - Accuracy.

▶ Datasets : CIFAR10, CIFAR100

▶ Data partitioning scheme: Dirichlet partitioning.

▶ Notations : E - Local epochs, α - Dirichlet parameter, K - No.of
Clients, C - Communication rounds.
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t-SNE and Scalability

Figure 2: Left: t-SNE visualization of the latent space, Right: Scalability
comparison on CIFAR100 dataset.

▶ Representations are well separated.

▶ Scalable and achieves similar performance across settings.
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Accuracy : E , α

Figure 3: Left: Epoch-wise test accuracies on CIFAR100, Right: Test
accuracies for varying levels of statistical heterogeneity

▶ Beneficial in scenarios where there are high communication costs or
computational constraints.

▶ IS-FedVAE is robust to varying levels of statistical heterogeneity.
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Covergence: Comparison with baselines

Figure 4: Convergence of IS-FedVAE as compared to baseline methods for
C = 100 rounds.

▶ Faster convergence - addressing the challenge of communication
bottle-neck
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Accuracy: Comparison with baselines

Methods CIFAR10 CIFAR100

IS-FedVAE 77.19 43.05

Orchestra [2] 70.64 35.64
f-BYOL [3] 66.18 38.88

f-SpecLoss [4] 64.53 35.99
f-SimSiam [5] 61.95 36.92
f-SimCLR [6] 58.15 33.49

Top-1 accuracy (%) comparison under the Linear evaluation protocol for
statistically heterogeneous (α = 0.1) setting for CIFAR10 and CIFAR100
datasets.
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Conclusions

▶ We addressed a crucial problem of unsupervised federated
representation learning.

▶ Proposed the novel IS-FedVAE using a distributed ELBO
formulation.

▶ Demonstrated the robustness to FL attributes.

▶ Outperformed the state-of-the-art baselines.

▶ Future works

• Other methods to utilize latent distributions in a federated setting.

• improving representations to carry out specific downstream tasks.
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Thank you!
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