

GENERALIZED MULTI-SOURCE INFERENCE FOR TEXT CONDITIONED MUSIC DIFFUSION MODELS

Emilian Postolache¹, Giorgio Mariani¹, Luca Cosmo², Emmanouil Benetos³, Emanuele Rodolà¹

¹ Sapienza University of Rome, Italy
 ² Ca' Foscari University of Venice, Italy
 ³ Centre for Digital Music, Queen Mary University of London, UK

Motivation

Università di Roma

- State-of-the-art generative models for music [1] typically output a single "final" mixture, which is difficult to manipulate.
- A new class of *compositional* generative models for music operates on subconstituents of musical tracks (stems).

- The first compositional model in continuous domain (as opposed to symbolic) is the Multi-Source Diffusion Model (MSDM) [3].
 - Generate all stems.
 - Perform accompaniment of stems based on others.
 - Separate stems.
- **Problem:** MSDM requires stem-separated datasets containing considerably less data than mixture datasets.
- **Objective:** Develop a method for compositional music generation called *Generalized Multi-Source Diffusion Inference (GMSDI)* that does not require stem-separated datasets.

Preliminaries

- In the absence of separated sources {x_k} for mixed tracks y, we resort, for training, to a dataset with mixes y and text embeddings z describing the constituent stems.
- A text embedding **z** can be obtained:
 - By mapping a textual description \mathbf{q} with a text-only encoder E_{ϕ}^{text} :

$$\mathbf{z} = E_{\phi}^{\mathrm{text}}(\mathbf{q})$$

 $\circ~$ Via a text-audio contrastive encoder with independent branches $E_{\phi}^{\rm contr}$ mapping the mixture itself:

$$\mathbf{z} = E_{\phi}^{\mathrm{contr}}(\mathbf{y})$$

- We assume the embeddings have the form:
 z = z₁ ⊗ · · · ⊗ z_K, with each z_k describing a source x_k in y.
- We train a (score-based) diffusion model [4] with such data:

$$\nabla_{\mathbf{y}(t)} \log p(\mathbf{y}(t) \mid \mathbf{z}) \approx S_{\theta}(\mathbf{y}(t), \mathbf{z}, \sigma(t)) \quad (1)$$

Jniversità Ca'Foscari √enezia

Method

- The idea is that, by leveraging (1), we can parameterize the score of individual sources: $\nabla_{\mathbf{x}_k}(t) \log p(\mathbf{x}_k(t) \mid \mathbf{z}_k) \approx S_\theta(\mathbf{x}_k(t), \mathbf{z}_k, \sigma(t))$
- With this, we can set up an inference procedure where we sample in parallel both the candidate sources \mathbf{x}_k and a mix \mathbf{y} , linking them with a Gaussian likelihood at each step. This inference procedure is defined by:

$$\begin{cases} S_{\theta}(\mathbf{x}_{k}(t), \mathbf{z}_{k}, \sigma(t)) + \frac{1}{\gamma_{\mathbf{x}_{k}}^{2}}(\mathbf{y}(t) - \sum_{l=1}^{K} \mathbf{x}_{l}(t)) \\ S_{\theta}(\mathbf{y}(t), \mathbf{z}_{1} \otimes \cdots \otimes \mathbf{z}_{K}, \sigma(t)) + \frac{1}{\gamma_{\mathbf{y}}^{2}}(\sum_{l=1}^{K} \mathbf{x}_{l}(t) - \mathbf{y}(t)) \end{cases}$$
(2)

- The method separates the sources while generating them! Generating a mixture is necessary for informing the sources about a shared context.
- For accompaniment generation we simply add the conditioning mixture (perturbed at time t) $\sum_{i \in \mathcal{I}} \mathbf{x}_i(t)$ to the sum $\sum_{j \in \mathcal{J}} \mathbf{x}_j(t)$ of the sources we are generating:

 $\sum_{l=1}^{K} \mathbf{x}_k(t) = \sum_{i \in \mathcal{I}} \mathbf{x}_i(t) + \sum_{j \in \mathcal{J}} \mathbf{x}_j(t)$

Experiments

- Quantitative experiments on Slakh2100 [4], trained with E_{ϕ}^{text} using supervised text data (tags) and mixtures. Qualitative experiments on MTG-Jamendo, trained with E_{ϕ}^{contr} .
- Right-Top: We study how well we can parameterize single sources having trained over mixtures, comparing with the weakly supervised MSDM [3] using FAD. Negative prompting is essential for good parametrizations.
- **Right-Bottom:** We use the sub-FAD protocol of [3] to test the coherence of the generated accompaniments and the FAD for unconditional generation.
- **Bottom:** We use the Dirac likelihood of [3] with our parameterized model for source separation (separating all or extracting one source). We obtain non-negligible results on separation despite training only with mixtures.

Model	Bass	Drums	Guitar	Piano	All
Demucs + Gibbs (512 steps) [27]	17.16	19.61	17.82	16.32	17.73
Weakly Supervised MSDM [14]	19.36	20.90	14.70	14.13	17.27
MSDM [14]	17.12	18.68	15.38	14.73	16.48
GMSDI Separator	9.76	15.57	9.13	9.57	11.01
GMSDI Extractor	11.00	10.55	9.52	10.13	10.30
Ensamble	11.00	15.57	9.52	10.13	11.56

References

- 1. Evans, Zach, et al. "Fast Timing-Conditioned Latent Audio Diffusion." arXiv preprint arXiv:2402.04825 (2024).
- Mariani, Ledi, et al. "Multi-Source Diffusion Models for Simultaneous Music Generation and Separation." *ICLR*. 2024.
 Song, Yang, et al. "Score-Based Generative Modeling through Stochastic Differential Equations." *ICLR*. 2020.
- 4. Manilow, Ethan, et al. "Cutting music source separation some Slakh: A `dataset to study the impact of training data quality and quantity." WASPAA.
- IEEE, 2019. 5. Bogdanov, Dmitry et al. "The MTG-Jamendo Dataset for Automatic Music Tagging." ICML Machine Learning for Music Discovery Workshop, 2019.

erc