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ABSTRACT

The most successful multi-domain text classification
(MDTC) approaches employ the shared-private paradigm
to facilitate the enhancement of domain-invariant features
through domain-specific attributes. Additionally, they em-
ploy adversarial training to align marginal feature distri-
butions. Nevertheless, these methodologies encounter two
primary challenges: (1) Neglecting class-aware information
during adversarial alignment poses a risk of misalignment;
(2) The limited availability of labeled data across multiple
domains fails to ensure adequate discriminative capacity for
the model. To tackle these issues, we propose a method called
Regularized Conditional Alignment (RCA) to align the joint
distributions of domains and classes, thus matching features
within the same category and amplifying the discriminative
qualities of acquired features. Moreover, we employ entropy
minimization and virtual adversarial training to constrain
the uncertainty of predictions pertaining to unlabeled data
and enhance the model’s robustness. Empirical results on
two benchmark datasets demonstrate that our RCA approach
outperforms state-of-the-art MDTC techniques.

Index Terms— Multi-domain text classification, adver-
sarial training, shared-private paradigm, joint distribution
alignment

1. INTRODUCTION

With the emergence of deep neural networks (DNNs), re-
searchers have achieved significant breakthroughs across var-
ious applications in machine learning, encompassing com-
puter vision, speech recognition, and natural language pro-
cessing (NLP). Among these domains, NLP stands out as par-
ticularly formidable, primarily due to the inherently discrete
nature of language data. Text classification, a foundational
task in NLP, boasts widespread applications, ranging from
spam detection [1] to data mining [2]. Over the past decades,
DNN-based models for text classification have amassed re-
markable accolades [3]. However, it’s worth noting that these
commendable achievements predominantly hinge upon ac-
cess to copious volumes of annotated data. In practical sce-
narios, labeled data may indeed be available across multiple
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domains, yet the quantities often prove insufficient to ade-
quately train a proficient classifier for one or more of these
domains. Moreover, certain domains, such as reviews per-
taining to medical equipment, may suffer from a complete
absence of labeled data. Additionally, a model trained on one
domain consistently exhibits subpar performance when ap-
plied to another domain characterized by a distinct data dis-
tribution. Hence, it becomes imperative to explore strategies
for enhancing classification accuracy within the target domain
by harnessing the available resources derived from related do-
mains.

Multi-domain text classification (MDTC) endeavors to
tackle the above problem. Contemporary MDTC techniques
predominantly rely upon adversarial training and the shared-
private paradigm to yield cutting-edge performance [4, 5].
More specifically, the adversarial training was initially rooted
in image generation [6]. Subsequently, its purview expanded
to encompass cross-domain alignment, with the objective of
capturing domain-invariant features that inherently exhibit
both transferability and discriminability [7]. The shared-
private paradigm serves as a conduit for learning not only
domain-invariant but also domain-specific features [8]. The
domain-specific features prove effective in enhancing the
discriminability of the domain-invariant features [9]. Nev-
ertheless, these MDTC methodologies remain mired in two
primary challenges. Firstly, the pursuit of aligning marginal
features entails the lurking peril of misalignment. For in-
stance, in the alignment of two domains, such as car and
camera reviews, while the car domain may harmonize seam-
lessly with the camera domain, a favorable car review may
paradoxically correspond with an unfavorable camera review.
Secondly, the constraint of accessing merely finite quantities
of annotated data during training renders the attainment of an
optimal classifier or a joint discriminator endowed with suf-
ficient discriminative capacity unattainable. This constraint
also predisposes the model to the perils of overfitting.

To tackle the aforementioned challenges, we propose a
Regularized Conditional Alignment (RCA) approach. The
RCA method orchestrates the alignment of joint distribu-
tions encompassing domains and classes, thereby ensuring
that samples with different sentiments will not be aligned to
the same feature point in the latent space. Furthermore, we
integrate principles derived from semi-supervised learning
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Fig. 1. The architecture of the RCA model.

(SSL) to augment the model’s discriminability and robust-
ness. Specifically, we incorporate entropy minimization [10]
and virtual adversarial training (VAT) [11]. These techniques
serve to relocate decision boundaries to the sparser regions of
the latent space and impose the essential Lipschitz constraint
upon the model. To gauge the efficacy of our proposed RCA
approach, we undertake empirical experiments on two MDTC
benchmarks: the Amazon review dataset and the FDU-MTL
dataset. The empirical findings conclusively demonstrate the
superiority of our method over state-of-the-art approaches.

2. THE APPROACH

In MDTC, we are given M domains {D;},, each domain
consists of two parts: a limit amount of labeled data L; =
{(x},y})}\_, and a large amount of unlabeled data U; =
{x}}i<,, where I; and u; are numbers of labeled and unla-
beled samples, respectively. The M domains are defined on
X XY where X is the input space and Y = {1, ..., K} is the
label space. In this paper, we mainly deal with the sentiment
classification problem such that K = 2. The task is to learn
amodel f : X — Y. The objective of MDTC is to improve
the performance of the model, measured in this paper as the
average classification accuracy among the M domains.

2.1. Regularized Conditional Alignment

Aligning the marginal feature distributions can be accom-
plished using adversarial training [12]. The fundamental
concept entails the concurrent discernment of both class and
domain labels. This is achieved by training a binary classifier
in tandem with an M -way discriminator, striving to optimize
performance to the fullest extent. Simultaneously, a feature
extractor endeavors to confound the discriminator. When
executed effectively, the classifier adeptly distinguishes la-
beled data, while the discriminator attains domain-agnostic
characteristics. Consequently, the classifier is poised to ren-
der accurate predictions concerning unlabeled data spanning
diverse domains. However, it is imperative to underscore that
prior MDTC methods [12, 13] predominantly align marginal
feature distributions, a practice that falls short of guaran-
teeing successful knowledge transfer as there may exist a

misalignment risk elucidated in Section 1.

The crux of our approach revolves around the imposi-
tion of not a conventional M-way adversarial loss for do-
main alignment, but rather a 2M -way adversarial loss. This
perspective operates under the assumption of the existence
of 2M potential domain labels, with the first M denoting
domains characterized by positive sentiment and the latter
M signifying domains imbued with negative sentiment. We
name the 2M-way discriminator as the joint discriminator,
tasked with assimilating distributions across domains while
accommodating diverse sentiments. The output of the joint
discriminator serves a dual purpose, capable of both desig-
nating the domain and sentiment labels of the input data.

During training, given the abundance of unlabeled data
spanning diverse domains, we enlist the binary classifier to
furnish pseudo-labels for the unlabeled data, thereby facilitat-
ing alignment via the joint discriminator. The classifier un-
dergoes training on all labeled data using classification loss
and unlabeled data through SSL regularizers.

As illustrated in Figure 1, the RCA model consists of
four components: a shared feature extractor Fs, M domain-
specific feature extractors {F}M,, a classifier C and a joint
discriminator D. The shared feature extractor F, aims to
learn domain-invariant features, while the domain-specific
feature extractor F7 is tailored to capture domain-specific
knowledge of the i-th domain. The classifier C takes the con-
catenation of the shared feature and domain-specific feature
and outputs the sentiment probability of an input x* as:

fe(x') = C([Fs(x"), Fa(x')]) € R (1)

where [, -] represents the concatenation of two vectors. The
joint discriminator D takes the shared feature of x* as input
and its output can be written as:

fa(x") = D(F,(x")) e R*M )

2.2. Loss Functions

In RCA, the classifier C is used for evaluation by training on
labeled data across different domains using the cross-entropy
loss. The classification loss can be defined as:

M
Ec = ZE(xi’yi)NLiKCE(fC(Xi)’yi) (3)
=1

where {cg (-, -) indicates the cross-entropy loss.

The joint discriminator is trained with both labeled and
unlabeled data among the M domains. The 2M-way adver-
sarial loss is defined as:

M
»Cd = ZEXiNLiuUiECE(fd(Xi)vdi) (4)

=1



For a labeled~ input x’, in the case of a positive label, its cor-
responding d’ is structured as [d?, 0], where d’ signifies the
domain label of x?, and O denotes the zero vector with di-
mensions of M. Specifically, for positively labeled inputs,
we designate the final M joint probabilities within d' as zero.
In the case where x* is negative, its associated di is config-
ured as [0, d*], attributing the domain label d' to the negative
input while assigning zeros to the preceding M joint prob-
abilities. Unlabeled inputs, on the other hand, have their d
determined by their pseudo-label. The formulation of d* for
unlabeled data mirrors that of labeled data. It is crucial to
emphasize that £, serves a dual purpose. It not only guides
adversarial alignment but also enforces consistent label pre-
dictions, ensuring concordance between the classifier and the
joint discriminator.

2.3. Semi-Supervised Learning Regularizers

MDTC presents itself as a dual-pronged challenge. The initial
endeavor involves the mitigation of disparities that manifest
among diverse domains. Following the successful alignment
of these domains, the MDTC transitions into an SSL problem.
Nonetheless, the conundrum of scarce labeled data resources
often emerges as a bottleneck, impeding the optimal training
of both a proficient classifier and a discriminator. Moreover,
as we perform joint adversarial alignment involving domains
and classes in RCA, the quality of pseudo-labels emerges as
a pivotal concern. Subpar pseudo-labels have the potential to
erode the alignment process, consequently deteriorating the
discriminative power of the model.

To alleviate the above adverse effects, we employ entropy
minimization [10] and virtual adversarial training (VAT) [11].
Entropy minimization adeptly governs prediction uncertainty
pertaining to unlabeled data within SSL [10, 14], it effectively
coerces decision boundaries to reside within the sparser re-
gions of the latent space, a highly coveted attribute consonant
with the cluster assumption [10]. The entropy minimization
loss is defined as:

)" log(fe(x"))] ®)

ZE,a o [fe(x

Since the joint discriminator undergoes training on both la-
beled and unlabeled data, optimizing the joint alignment of
domains and classes can be achieved by processing low-
entropy predictions generated by the classifier [15]. Further-
more, entropy minimization satisfies the cluster assumption
only for the Lipschitz classifiers [10]. To fulfill this require-
ment, we incorporate VAT into our model. VAT promotes the
refinement of label predictions by instilling robustness in the
classifier against local adversarial input perturbations € [11].
The VAT loss on unlabeled data is defined as:

uvt Z]ExlNU maX Dkl(fc( )||fc(xz+7,))] (6)

where Dy;(-||-) is the Kullback-Leibler divergence [16]. Fol-
lowing [17], we also apply VAT on labeled data:

Mfelx"+m] (D

M
Lipt =Y Byiop, max Dya(fe(x
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2.4. Overall Objective Function

We combine the introduced objective functions to define the
overall objective function of the RCA method:

min = max L. + AgLa + Auwt(Le + Luwt)
Fo AR, D (3

+ )\lvtﬁlvt

where Ay, , e, and Ay, are hyperparameters that trader-off
different objective functions. The RCA method optimizes the
model parameters in an alternating fashion following [6].

3. EXPERIMENTS

3.1. Datasets

In our experiments, we conduct experiments on two MDTC
benchmarks: the Amazon review dataset [18] and the FDU-
MTL dataset [8]. The Amazon review dataset encompasses
four domains: books, DVDs, electronics, and kitchen. Each
domain contains 1,000 positive samples and 1,000 negative
samples. This dataset has undergone meticulous prepro-
cessing, transforming textual data into a bag of features,
which regrettably strips away the inherent word order infor-
mation. Thus, our approach involves taking the 5,000 most
prevalent features and representing each review as a 5,000-
dimensional feature vector, wherein feature values are the
raw counts of the features. The FDU-MTL dataset, on the
other hand, presents a more formidable challenge. It spans
16 domains: 14 Amazon review domains (books, electronics,
DVDs, kitchen, apparel, camera, health, music, toys, video,
baby, magazine, software, and sport) and two movie review
domains (IMDB and MR). The textual content within this
dataset remains in its pristine form, tokenized by the Stanford
tokenizer [19]. Each domain is endowed with a develop-
ment set comprising 200 samples and a test set featuring
400 samples. The number of training and unlabeled data ex-
hibits slight fluctuations across domains, they typically hover
around 1,400 and 2,000, respectively.



3.2. Implementation Details

All experiments are executed employing PyTorch. To ensure
fair comparisons, we adhere rigorously to the standard MDTC
evaluation protocols [12]. We have three hyperparameters:
Ads Auvt, and Ape. In our experiments, we set Ay = 0.5,
Awwt = 1, and A\j,; = 0.01. The batch size is set to 8,
and training is orchestrated using the Adam optimizer with
a learning rate of 0.0001. ReLU serves as the activation func-
tion, the number of training iterations is 50, and the dropout
rate for each component is 0.4. Furthermore, we adopt the
same network architecture following [12, 4]. We set the di-
mension of the domain-invariant feature as 128 and that of the
domain-specific feature as 64. The classifier C is a multi-layer
perceptron (MLP) with one hidden layer containing 128 + 64
units. The joint discriminator is also an MLP with one hidden
layer whose size is 128.

For the Amazon review dataset, we employ MLPs featur-
ing two hidden layers with 1,000 and 500 units, respectively,
as feature extractors. The input dimension stands at 5,000.
We conduct 5-fold cross-validation on this dataset and report
the average test classification accuracy across the five folds.

For the FDU-MTL dataset, we employ a Convolutional
Neural Network (CNN) with one convolutional layer to serve
as a feature extractor. The CNN is designed to encompass
different kernel sizes (3,4,5), with a total of 200 kernels.
Notably, the input to the convolutional layer comprises 100-
dimensional word embeddings, obtained by using word2vec
[20] for each word within the input sequence.

3.3. Comparison Baselines

Our RCA method is compared with the following base-
lines. The collaborative multi-domain sentiment classifica-
tion (CMSC) combines the outputs of a shared classifier and
a set of domain-dependent classifiers to make the final pre-
dictions [21]. The CMSC models can be trained with the
least square loss (CMSC-LS), the hinge loss (CMSC-SVM),
and the log loss (CMSC-Log). The adversarial multi-task
learning for text classification (ASP-MTL) uses adversar-
ial training and long short-term memory (LSTM) networks
to capture share-private separation of different domains [8].
The multinomial adversarial network (MAN) leverages two
loss functions to train the discriminator: the least square loss
(MAN-L2) and the negative log-likelihood loss (MAN-NLL)
[12]. The multi-task learning with a bi-directional language
model (MT-BL) employs language modeling and a uniform
label distribution-based loss function to guide the feature
learning [22]. The dual adversarial co-learning (DACL) com-
bines two types of adversarial training, discriminator-based
and classifier-based adversarial training [13]. The condi-
tional adversarial network (CAN) performs the alignment of
conditional feature distributions [4]. All compared methods
follow the standard MDTC evaluation protocols, we hence
conveniently cite the results from [13, 4].

Table 1. MDTC results on the Amazon review dataset.

Domain | CMSC-LS CMSC-SVM CMSC-Log MAN-L2 MAN-NLL DACL CAN RCA(Proposed)
Books 82.10 82.26 81.81 82.46 82.98 83.45 8376 84.97+0.15
DVD 82.40 83.48 83.73 83.98 84.03 8550 84.68 85.81+0.11
Electr. 86.12 86.76 86.67 87.22 87.06 87.40 8834 89.35+0.17
Kit. 87.56 88.20 88.23 88.53 88.57 90.00  90.03  90.86 + 0.09
AVG 84.55 85.18 85.11 85.55 85.66 86.59 86.70 87.75+0.12

Table 2. MDTC results on the FDU-MTL dataset.

Domain ASP-MTL MAN-L2 MAN-NLL MT-BL DACL CAN RCA(Proposed)
books 84.0 87.6 86.8 89.0 87.5 87.8 89.2+04
electronics 86.8 87.4 88.8 90.2 903 916 87.6+£0.5
dvd 85.5 88.1 88.6 88.0 89.8 89.5 90.4+0.3
kitchen 86.2 89.8 89.9 90.5 91.5 90.8 92.5+04
apparel 87.0 87.6 87.6 87.2 89.5 870 88.6+0.5
camera 89.2 91.4 90.7 89.5 91.5 93.5 95.8+0.2
health 88.2 89.8 89.4 92.5 90.5 90.4 90.74+0.4
music 825 85.9 85.5 86.0 86.3 86.9 87.7+0.3
toys 88.0 90.0 90.4 92.0 91.3 90.0 924+0.3
video 84.5 89.5 89.6 88.0 88.5 88.8 90.0+0.2
baby 88.2 90.0 90.2 88.7 92.0 92.0 92.7+0.6
magazine 92.2 92.5 92.9 92.5 93.8 94.5 95.4+04
software 87.2 90.4 90.9 91.7 90.5 90.9 929+0.5
sports 85.7 89.0 89.0 89.5 893 912 89.7£0.5
IMDb 85.5 86.6 87.0 88.0 87.3 88.5 89.5+0.1
MR 76.7 76.1 76.7 75.1 76.0 77.1 78.3+0.3
AVG 86.1 88.2 88.4 88.6 89.1 89.4 90.2+0.3

3.4. Results

In this paper, we present experimental results based on 5 runs.
The experimental results on the Amazon review dataset are
showcased in Table 1. Notably, our RCA method attains the
highest average accuracy of 87.75%, surpassing CAN by a
significant margin of 1.05%. In addition, our model excels in
every individual domain, eclipsing the performance of com-
peting baselines.

The experimental results of the FDU-MTL dataset are
presented in Table 2. From Table 2, it can be noted that our
RCA model obtains the best average accuracy, beating the
runner-up CAN model by a margin of 0.8%. Impressively,
our method outperforms other baselines on 12 out of 16
domains.

4. CONCLUSION

In this paper, we propose a Regularized Conditional Align-
ment (RCA) method for MDTC. Our RCA method distin-
guishes itself by aligning the joint distributions of domains
and classes through a sophisticated enhancement of the con-
ventional adversarial loss, leading to a refined 2\ -way adver-
sarial loss. This refined joint alignment serves as an effective
safeguard against the misalignment risk brought by aligning
marginal feature distributions in MDTC. Furthermore, we en-
rich our approach by integrating entropy minimization and
virtual adversarial training to facilitate the displacement of
decision boundaries from the densely populated regions in the
shared latent space and impose the Lipschitz constraint on our
model, respectively. The experimental results on two MDTC
benchmarks unequivocally demonstrate that our RCA method
can outperform the state-of-the-art baselines.
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