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Background

One-bit sampling is especially well-suited for small platforms due to
its reduced resource consumption and lower data volume.

However, it poses great challenges for signal processing due to the
absence of amplitude information.
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Problem formulation

The covariance structure of different types of noise

(a) White noise (b) Colored noise

Assumptions:

A1. The unquantized signal y ∈ RM×1 ∼ N (0,Σy).

A2. We have N i.i.d. observations x(t) = sign(y(t)), t = 1, · · · ,N.

The goal: To recover Σy from the observations x(t).
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Problem formulation

Conventional approach: Arcsine law(zero quantization thresholds):

Σx =
2

π
sin−1 (Cy) (1)

where Σ denotes covariance matrix and C denotes coherence matrix.
Limitation: We can only recover Cy, but cannot recover the
diagonal elements of Σy.
Solution: Using non-zero quantization thresholds.

Figure: One-bit non-zero threshold quantization
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Problem formulation

Constant threshold approach 1:
With a constant threshold (v(t) = v1M×1), reconstruction can be
accomplished based on the following probabilities:

pi = Pr{xi = +1} = Q

(
v

σi

)
, i = 1, 2, (2)

p12 = Pr{x1 = +1, x2 = +1}

=

∫ ∞
v
σ1

∫ ∞
v
σ2

f

(
y1, y2

∣∣∣ σ12

σ1σ2

)
dy1dy2, (3)

where f (y1, y2|ρ) is the probability density function of bivariate
Gaussian distribution with unit variances and correlation coefficient
ρ, and

Q(a) =

∫ ∞
a

1√
2π

exp

(−t2

2

)
dt.

1Liu et al, “One-bit autocorrelation estimation with nonzero thresholds,”
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2021.
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Problem formulation

It is difficult to use a single threshold to deal with all the
parameters.
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(a) [σ1, σ2, σ12] = [0.25, 0.6,−0.08]

1 2 3 4

10−2

10−1

100

Threshold
M

SE

σ1-Theory
σ2-Theory
σ12-Theory

(b) [σ1, σ2, σ12] = [0.9, 1.2, 0.2]

Figure: Mean squared error versus threshold.
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Problem formulation

Random threshold approach 2: the random threshold method
(v(t) ∼ N (v1M ,Σt)) is equivalent to adding a zero-mean
dithering signal to the constant sampling threshold v1M .

The reconstruction can be accomplished based on modified
arcsine law2.
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Figure: Thresholds for different quantization schemes.

2Eamaz et al, “Covariance recovery for one-bit sampled non-stationary
signals with time-varying sampling thresholds,” IEEE Trans. Signal Process.,
2022.
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Problem formulation

Proposed scheme: v(t) is known and time-varying.

The reconstruction can be accomplished based on the following
probabilities:

pi ,t = Pr{xi (t) = +1} = Q

(
vi (t)

σi

)
, i = 1, 2, (4)

p12,t = Pr{x1(t) = +1, x2(t) = +1}

=

∫ ∞
v1(t)
σ1

∫ ∞
v2(t)
σ2

f

(
y1, y2

∣∣∣ σ12

σ1σ2

)
dy1dy2, (5)
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The covariance recovery algorithm

General steps:
1. Set the time-varying, known sampling threshold.
2. Estimate diagonal entries by the following Newton’s iteration:

σ̂
(u+1)
i = σ̂

(u)
i −

∂L(xi ;σi )

∂σi

/ ∂2L(xi ;σi )

∂σ2
i

∣∣∣∣
σi=σ̂

(u)
i

, (6)

3. Estimate off-diagonal entry by the following Newton’s iteration:

σ̂
(u+1)
12 = σ̂

(u)
12 −

∂2L(X; θ̃)

∂σ12

/ ∂2L(X; θ̃)

∂σ2
12

∣∣∣∣∣
σ12=σ̂

(u)
12

. (7)

where θ̃ = [σ̂1, σ̂2, σ12]T

4. Seek the joint MLE of σ1, σ2, and σ12 by using the gradient
descent approach:

θ̂
(u+1)

= θ̂
(u)

+ γ(u) ∂L(X;θ)

∂θ

∣∣∣∣
θ=θ̂

(u)
, (8)

where γ(u) is the learning rate at the uth iteration.
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Simulations

Usefulness of Exact Threshold Values
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Figure: Mean squared error versus number of samples

Xiao,Huang, Raḿırez, Qian,So ICASSP 2024



Simulations

Comparison of Mean Squared Errors
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Figure: Mean squared error versus threshold
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Performance Analysis

Theorem

The MSE matrix of the MLE can be approximated asymptotically
(N →∞) by

Q = F−1(θ0).

Here, F(θ) denotes the Fisher information matrix (FIM) defined as:

F(θ) = E
[
∂L(X;θ)

∂θ

∂L(X;θ)

∂θT

]
.

Furthermore, θ0 = [σ1, σ2, σ12]T represents the genuine parameter
vector.
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Performance Analysis

Since the samples are mutually independent, we can compute the
Fisher information contributed by each sample separately.

F(θ) =
N∑
t=1

∑
x(t)∈{±1,±1}

ot(θ)

[
∂L(x(t))

∂θ

∂L(x(t))

∂θT

]
. (9)

where ot(θ) is the probability density function of the sample x(t).

Building upon Theorem, the asymptotic MSE for the individual
components can be gleaned from the diagonal entries of F−1(θ0).
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Simulations

Theoretical Mean Squared Error
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Figure: Mean squared error versus number of samples
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Simulations

DOA Estimation of Coherent sources
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(a) Time-varying threshold
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(b) Constant threshold
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(c) Random threshold
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(d) Zero threshold

Figure: Comparison of estimated DOA
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Conclusion

Summary:
In this work, we present a novel approach based on a known and
time-varying threshold to recover the the covariance matrix of the
unquantized signal from one-bit quantized observations, Moreover,
we study the performance of the proposed method.

Advantages:
1. It offers higher estimation accuracy.
2. It demonstrates improved robustness against parameter
unevenness and high correlation coefficients.
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