

ICASSP24

Activation Compression of Graph Neural Networks using Block-Wise Quantization with Improved Variance Minimization

Sebastian Eliassen (she@di.ku.dk) & Raghavendra Selvan (raghav@di.ku.dk)

UNIVERSITY OF COPENHAGEN

• Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes
- EXACT (Liu et al. 2022) addresses this through extreme activation compression

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes
- EXACT (Liu et al. 2022) addresses this through extreme activation compression
- We build upon this work with two key contributions

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes
- EXACT (Liu et al. 2022) addresses this through extreme activation compression
- We build upon this work with two key contributions
 - 1. Block-wise quantization of GNNs

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes
- EXACT (Liu et al. 2022) addresses this through extreme activation compression
- We build upon this work with two key contributions
 - 1. Block-wise quantization of GNNs
 - 2. Variance minimization due to activation compression

Overview

.0

Motivation

Background

Contributions Block-wise Quantization Variance Minimization

Summary and Conclusions

0

A Quick Introduction to GNNs

- Graph $\mathcal{G} = (\mathbf{X}, \mathbf{A})$ with N nodes
 - $\mathbf{X} \in \mathbb{R}^{N \times F}$: Dense node feature matrix with *F*-dimensional features
 - $\mathbf{A} \in \{0,1\}^{N \times N}$: Sparse adjacency matrix
 - $\mathbf{A}_{i,j} = 1$ if an edge exists between nodes *i* and *j*, otherwise $\mathbf{A}_{i,j} = 0$

0

A Quick Introduction to GNNs

- Graph $\mathcal{G} = (\mathbf{X}, \mathbf{A})$ with N nodes
 - $\mathbf{X} \in \mathbb{R}^{N \times F}$: Dense node feature matrix with *F*-dimensional features
 - $\mathbf{A} \in \{0,1\}^{N \times N}$: Sparse adjacency matrix
 - $\mathbf{A}_{i,j} = 1$ if an edge exists between nodes *i* and *j*, otherwise $\mathbf{A}_{i,j} = 0$

A Quick Introduction to GNNs

- Graph $\mathcal{G} = (\mathbf{X}, \mathbf{A})$ with N nodes
 - $\mathbf{X} \in \mathbb{R}^{N \times F}$: Dense node feature matrix with *F*-dimensional features
 - $\mathbf{A} \in \{0,1\}^{N \times N}$: Sparse adjacency matrix
 - $\mathbf{A}_{i,j} = 1$ if an edge exists between nodes *i* and *j*, otherwise $\mathbf{A}_{i,j} = 0$
- GNN Layer Update
 - $\mathbf{H}^{(\ell+1)} = \sigma \left(\mathbf{A} \, \mathbf{H}^{(\ell)} \, \mathbf{\Theta}^{(\ell)} \right)$
 - Initial node representations: $\mathbf{H}^{(0)} := \mathbf{X}$
 - Weights: $\boldsymbol{\Theta}^{(\ell)} \in \mathbb{R}^{D \times D}$ at layer ℓ
 - Non-linearity: $\sigma(\cdot)$

Figure: Animation of message-passing.

The Memory Bottleneck of GNNs

- Memory usage of activations
 - During the forward-pass all intermediate results $(\mathbf{H}^{(\ell)}\mathbf{\Theta}^{(\ell)}) \in \mathbb{R}^{N \times D}$ and node embedding matrices $\mathbf{H}^{(\ell)} \in \mathbb{R}^{N \times D}$ are stored in memory.
 - Results in $\mathcal{O}(LND)$ space complexity, with L being the number of layers.
 - For this reason we focus on compressing activation maps.

Random projection

- Projection of the activations into a lower-dimensional space
- $\mathbf{H}_{\text{proj}}^{(\ell)} = \text{RP}(\mathbf{H}^{(\ell)}) = \mathbf{H}^{(\ell)}\mathbf{R}$ where $\mathbf{R} \in \mathbb{R}^{D \times R}$ is the normalized Rademacher matrix with R < D (Achlioptas 2001).
- **R** has the following property: $\mathbb{E}[\mathbf{H}^{(\ell)}\mathbf{R}\mathbf{R}^{\top}] = \mathbb{E}[\mathbf{H}^{(\ell)}\mathbf{I}] = \mathbb{E}[\mathbf{H}^{(\ell)}]$

Random projection

- Projection of the activations into a lower-dimensional space
- $\mathbf{H}_{\text{proj}}^{(\ell)} = \text{RP}(\mathbf{H}^{(\ell)}) = \mathbf{H}^{(\ell)}\mathbf{R}$ where $\mathbf{R} \in \mathbb{R}^{D \times R}$ is the normalized Rademacher matrix with R < D (Achlioptas 2001).
- **R** has the following property: $\mathbb{E}[\mathbf{H}^{(\ell)}\mathbf{R}\mathbf{R}^{\top}] = \mathbb{E}[\mathbf{H}^{(\ell)}\mathbf{I}] = \mathbb{E}[\mathbf{H}^{(\ell)}]$
- For this reason, R defines the projected dimensionality.

.0

Stochastic Rounding

• Maps activations from FLOAT32 to lower precision integers

.0

Stochastic Rounding

- Maps activations from FLOAT32 to lower precision integers
- The quantization, using *b* bits, consists of mapping your activations $\mathbf{h} \in \mathbb{R}^D$ into $B = 2^b 1$ buckets and then rounding them to an integer. Specifically:

Stochastic Rounding

- Maps activations from FLOAT32 to lower precision integers
- The quantization, using b bits, consists of mapping your activations h ∈ ℝ^D into B = 2^b - 1 buckets and then rounding them to an integer. Specifically:

1. A shift and scale into [0, B]:

$$\bar{\mathbf{h}} = (\mathbf{h} - \min(\mathbf{h})) \frac{B}{\max(\mathbf{h}) - \min(\mathbf{h})}$$

Figure: Example histogram of some $\bar{\mathbf{h}}$ with b = 2. Colors denote what integer a value most likely stochastically rounds to.

Stochastic Rounding

- Maps activations from FLOAT32 to lower precision integers
- The quantization, using *b* bits, consists of mapping your activations $\mathbf{h} \in \mathbb{R}^D$ into $B = 2^b 1$ buckets and then rounding them to an integer. Specifically:

1. A shift and scale into [0, B]:

$$\mathbf{\bar{h}} = (\mathbf{h} - \min(\mathbf{h})) - \frac{B}{(\mathbf{h} - \mathbf{h})}$$

A stochastic rounding (SR) operation denoted by |·]:

$$\mathbf{h}_{\mathtt{INT}} = \mathsf{Quant}\left(\mathbf{h}
ight) = \left\lfloor ar{\mathbf{h}}
ight
ceil$$

Figure: Example histogram of some $\bar{\mathbf{h}}$ with b = 2. Colors denote what integer a value most likely stochastically rounds to.

• The quantized embeddings **h**_{INT} are dequantized in the backward-pass.

0

- The quantized embeddings **h**_{INT} are dequantized in the backward-pass.
- Dequantization linearly maps **h**_{INT} back to **h**'s range, by performing the inverse transformation.

0

- The quantized embeddings **h**_{INT} are dequantized in the backward-pass.
- Dequantization linearly maps **h**_{INT} back to **h**'s range, by performing the inverse transformation.
- Equation: $\hat{\mathbf{h}} = \frac{\max(\mathbf{h}) \min(\mathbf{h})}{B} \mathbf{h}_{\text{INT}} + \min(\mathbf{h}).$

0

- The quantized embeddings **h**_{INT} are dequantized in the backward-pass.
- Dequantization linearly maps **h**_{INT} back to **h**'s range, by performing the inverse transformation.
- Equation: $\hat{\mathbf{h}} = \frac{\max(\mathbf{h}) \min(\mathbf{h})}{B} \mathbf{h}_{\text{INT}} + \min(\mathbf{h}).$
- Property: $\mathbb{E}[\hat{\mathbf{h}}] = \mathbf{h}$

- The quantized embeddings $h_{\mbox{\scriptsize INT}}$ are dequantized in the backward-pass.
- Dequantization linearly maps **h**_{INT} back to **h**'s range, by performing the inverse transformation.
- Equation: $\hat{\mathbf{h}} = \frac{\max(\mathbf{h}) \min(\mathbf{h})}{B} \mathbf{h}_{\text{INT}} + \min(\mathbf{h}).$
- Property: $\mathbb{E}[\hat{h}] = h$
- Stochastic rounding (SR) keeps $\hat{\mathbf{h}}$ unbiased, with rounding probability proportional to boundary proximity

- The quantized embeddings **h**_{INT} are dequantized in the backward-pass.
- Dequantization linearly maps **h**_{INT} back to **h**'s range, by performing the inverse transformation.
- Equation: $\hat{\mathbf{h}} = \frac{\max(\mathbf{h}) \min(\mathbf{h})}{B} \mathbf{h}_{\text{INT}} + \min(\mathbf{h}).$
- Property: $\mathbb{E}[\hat{\mathbf{h}}] = \mathbf{h}$
- Stochastic rounding (SR) keeps $\hat{\mathbf{h}}$ unbiased, with rounding probability proportional to boundary proximity
- This also applies to non-integer rounding values.

Overview

.0

Motivation

Background

Contributions Block-wise Quantization Variance Minimization

Summary and Conclusions

Block-wise quantization

- Taking inspiration from Chen et al. 2021; Dettmers et al. 2021, we group the input tensor such that *G* elements are quantized at a time.
- This is done with

$$\mathbf{H}_{\texttt{block}}^{(\ell)} \in \mathbb{R}^{\frac{N \cdot R}{G} \times G} := \texttt{reshape}\left(\mathbf{H}_{\texttt{proj}}^{(\ell)}, G\right),$$

where reshape denotes the reshape function as known from packages like Numpy or Pytorch.

• Since each quantization operation is done row-wise, this increases concurrency.

Figure: The matrix that has been reshaped to a lower row-count, also has fewer quantizations.

Results of block-wise quantization

Quant.	G/R	Accuracy ↑	S (e/s) ↑	S Impr. (%)	M (MB) ↓	M Impr. (%)
--------	-----	------------	------------------	-------------	-----------------	-------------

.0

Results of block-wise quantization

Quant.	G/R	Accuracy ↑	S (e/s) ↑	S Impr. (%)	$M(MB)\downarrow$	M Impr. (%)
FP32	-	71.95 ± 0.16	13.07	-	786.22	-
INT2	1	71.16 ± 0.21	10.03	-	30.47	-
INT2	2	71.16 ± 0.34	10.23	+2.00	27.89	-8.47
	4	71.17 ± 0.22	10.46	+4.29	26.60	-12.70
	8	71.21 ± 0.39	10.54	+5.08	25.95	-14.83
	16	71.01 ± 0.19	10.55	+5.18	25.72	-15.59
	32	70.87 ± 0.29	10.54	+5.08	25.60	-15.98
	64	71.28 ± 0.25	10.54	+5.08	25.56	-16.11

Table: G/R denotes the factor by which we increase the dimensionality via block-wise quantization. Standard deviations of test accuracy is computed over 10 runs

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.
- In order to do this we need three components:

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.
- In order to do this we need three components:
 - 1. The distribution of activations (probability density function or pdf)

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.
- In order to do this we need three components:
 - 1. The distribution of activations (probability density function or pdf)
 - 2. The variance induced as a function of the activation $(Var(\lfloor h \rfloor))$

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.
- In order to do this we need three components:
 - 1. The distribution of activations (probability density function or pdf)
 - 2. The variance induced as a function of the activation $(Var(\lfloor h \rfloor))$
 - 3. Through integration, we can use (1) and (2) to calculate the expected variance, which we then minimize as a function of the boundaries.

SR is performed on the normalized activations H^(l)_{proj}, which are all of the activations transformed into the range [0, B].

Figure: Histogram of observed and theorized $\overline{H}^{(1)}_{\text{proj}}$ in a GNN model on the OGB-Arxiv data.

- SR is performed on the normalized activations H^(l)_{proj}, which are all of the activations transformed into the range [0, B].
- Two PDF's are hypothesized: \mathcal{U} (EXACT)

Figure: Histogram of observed and theorized $\overline{\textbf{H}}_{\text{proj}}^{(1)}$ in a GNN model on the OGB-Arxiv data.

- SR is performed on the normalized activations H^(l)_{proj}, which are all of the activations transformed into the range [0, B].
- Two PDF's are hypothesized: $\mathcal U$ (EXACT) and \mathcal{CN} (Ours).

Figure: Histogram of observed and theorized $\overline{\textbf{H}}_{\text{proj}}^{(1)}$ in a GNN model on the OGB-Arxiv data.

- SR is performed on the normalized activations H^(l)_{proj}, which are all of the activations transformed into the range [0, B].
- Two PDF's are hypothesized: $\mathcal U$ (EXACT) and \mathcal{CN} (Ours).
- \mathcal{CN} is the clipped normal distribution and is the result of clipping \mathcal{N} such that the support lies in [0, B].
- Empirically we have shown that we can define \mathcal{CN} just from the dimensionality D, that is

$$\mathcal{CN}_{[1/D]}$$
 is the pdf of y given,
 $y = \min(\max(0, X), B), \quad X \sim \mathcal{N}(\mu, \sigma),$
where $\mu = B/2$ and $\sigma = -\mu/\Phi^{-1}(1/D).$

0

Distribution of SR variance

- Using Xia et al. 2020, we can estimate the variance induced by SR.
- This turns out to be

$$\operatorname{Var}(\lfloor h \rceil) = \sum_{i=1}^{i=B} \left(\delta_i (h - \alpha_{i-1}) - (h - \alpha_{i-1})^2 \right),$$

where δ_i is the width of the bin containing *h*, and α_i is the starting position of the bin.

Figure: SR variance as a function of second (α) and third (β) boundary position.

Using the distributions to lessen variance induced by SR

By combining the PDF of activations and the variance induced as a function of an activations (Var([h])), we get:

$$\mathbb{E}[\operatorname{Var}(\lfloor h \rceil)] = \int_0^{\alpha} (\alpha \cdot h - h^2) \mathcal{CN}_{[1/D]}(h) dh$$
$$+ \int_{\alpha}^{\beta} \left((\beta - \alpha)(h - \alpha) - (h - \alpha)^2 \right) \mathcal{CN}_{[1/D]}(h) dh$$
$$+ \int_{\beta}^{B} \left((B - \beta)(h - \beta) - (h - \beta)^2 \right) \mathcal{CN}_{[1/D]}(h) dh$$

• Using numerical integration we can minimize the above w.r.t. α and β (variance minimization), and cache the best boundaries for any *D*.

Results of variance minimization

	Dataset	Layer	R	\mathcal{U}	$\mathcal{CN}_{[1/D]}$	Reduction Factor (\times)	Var. Reduction $(\%)$
--	---------	-------	---	---------------	------------------------	-------------------------------	-----------------------

.0

Results of variance minimization

Dataset	Layer	R	U	$\mathcal{CN}_{[1/D]}$	Reduction Factor (\times)	Var. Reduction $(\%)$
Arxiv	layer 1	16	0.0495	0.0213	2.32	3.17
	layer 2	16	0.0446	0.0016	27.88	2.09
	layer 3	16	0.0451	0.0041	11.00	2.19
Flickr	layer 1	63	0.0674	0.0017	39.65	6.14
	layer 2	32	0.0504	0.0033	15.27	4.37

Table: Jensen-Shannon divergence measure for Uniform and Clipped Normal distributions compared to the normalized activations $\bar{\mathbf{h}}$ at each layer of the GNN for Arxiv and Flickr datasets.

Results of variance minimization

Dataset	Layer	R	U	$\mathcal{CN}_{[1/D]}$	Reduction Factor (\times)	Var. Reduction (%)
Arxiv	layer 1	16	0.0495	0.0213	2.32	3.17
	layer 2	16	0.0446	0.0016	27.88	2.09
	layer 3	16	0.0451	0.0041	11.00	2.19
Flickr	layer 1	63	0.0674	0.0017	39.65	6.14
	layer 2	32	0.0504	0.0033	15.27	4.37

Table: Jensen-Shannon divergence measure for Uniform and Clipped Normal distributions compared to the normalized activations $\bar{\mathbf{h}}$ at each layer of the GNN for Arxiv and Flickr datasets.

Quant.	G/R	Accuracy ↑	S (e/s) ↑	S Impr. (%) \mid M(MB) \downarrow	. M Impr. (%)
FP32	-	71.95 ± 0.16	13.07	- 786.22	-
INT2	1	71.16 ± 0.21	10.03	- 30.47	-
INT2+VM	1	71.20 ± 0.19	9.16	-8.67 30.47	0.00

Overview

.0

Motivation

Background

Contributions Block-wise Quantization Variance Minimization

Summary and Conclusions

• GNNs have seen a large increase in popularity withing the ML-field.

Summary

- GNNs have seen a large increase in popularity withing the ML-field.
- Unfortunately they can suffer from poor memory scaling.

Summary

- GNNs have seen a large increase in popularity withing the ML-field.
- Unfortunately they can suffer from poor memory scaling.
- EXACT (Liu et al. 2022) tries to alleviate this, via extreme activation compression

- GNNs have seen a large increase in popularity withing the ML-field.
- Unfortunately they can suffer from poor memory scaling.
- EXACT (Liu et al. 2022) tries to alleviate this, via extreme activation compression
- We try to show that you can improve this further, even in an already very compressed activation space.

• Significant memory reduction and slight runtime speedup achieved through block-wise quantization.

- Significant memory reduction and slight runtime speedup achieved through block-wise quantization.
- Non-uniform distribution of GNN activation maps demonstrated.

- Significant memory reduction and slight runtime speedup achieved through block-wise quantization.
- Non-uniform distribution of GNN activation maps demonstrated.
- Introduced variable and non-uniform bin widths in stochastic rounding to reduce quantization variance.

- Significant memory reduction and slight runtime speedup achieved through block-wise quantization.
- Non-uniform distribution of GNN activation maps demonstrated.
- Introduced variable and non-uniform bin widths in stochastic rounding to reduce quantization variance.
- Methods are model-agnostic: opportunities for applying these methods to other architectures and pre-trained networks.

Bibliography

Achlioptas, Dimitris (2001). "Database-Friendly Random Projections". In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. PODS '01. Santa Barbara, California, USA: Association for Computing Machinery, pp. 274–281. ISBN: 1581133618. DOI: 10.1145/375551.375608. URL: https://doi.org/10.1145/375551.375608. Chen, Jianfei et al. (2021). ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training. arXiv: 2104.14129 [cs.LG]. Dettmers, Tim et al. (2021). "8-bit Optimizers via Block-wise Quantization". In: CoRR abs/2110.02861. arXiv: 2110.02861. URL: https://arxiv.org/abs/2110.02861. Liu, Zirui et al. (2022). "EXACT: Scalable Graph Neural Networks Training via Extreme Activation Compression". In: International Conference on Learning Representations, URL: https://openreview.net/forum?id=vkaMag95 rX. Xia, Lu et al. (2020). Improved stochastic rounding. arXiv: 2006.00489 [math.NA].

Acknowledgements

- Partly funded by European Union's Horizon Europe Research and Innovation programme under grant agreements No. 101070284 and No. 101070408.
- Thanks to **STIBOFONDEN** for their generous support.
- Grateful for the collaboration at **SAINTS Lab**.
- Check out carbontracker.info for advancing CO2e reduction in ML.

Funded by the Horizon 2020 Framework Programme of the European Union

K STIBOFONDEN

