

Motivation

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications

Motivation

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes

Motivation

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes
- EXACT (Liu et al. 2022) addresses this through extreme activation compression

Motivation

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes
- EXACT (Liu et al. 2022) addresses this through extreme activation compression
- We build upon this work with two key contributions

Motivation

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes
- EXACT (Liu et al. 2022) addresses this through extreme activation compression
- We build upon this work with two key contributions

1. Block-wise quantization of GNNs

Motivation

- Graph Neural Networks (GNNs) have seen widespread use within many Machine Learning (ML) applications
- GNNs do suffer from poor memory scaling w.r.t. the amount of nodes
- EXACT (Liu et al. 2022) addresses this through extreme activation compression
- We build upon this work with two key contributions

1. Block-wise quantization of GNNs
2. Variance minimization due to activation compression

Overview

Motivation

Background

Contributions

Block-wise Quantization
Variance Minimization

Summary and Conclusions

A Quick Introduction to GNNs

- Graph $\mathcal{G}=(\mathbf{X}, \mathbf{A})$ with N nodes
- $\mathbf{X} \in \mathbb{R}^{N \times F}$: Dense node feature matrix with F-dimensional features
- $\mathbf{A} \in\{0,1\}^{N \times N}$: Sparse adjacency matrix
- $\mathbf{A}_{i, j}=1$ if an edge exists between nodes i and j, otherwise $\mathbf{A}_{i, j}=0$

A Quick Introduction to GNNs

- Graph $\mathcal{G}=(\mathbf{X}, \mathbf{A})$ with N nodes
- $\mathbf{X} \in \mathbb{R}^{N \times F}$: Dense node feature matrix with F-dimensional features
- $\mathbf{A} \in\{0,1\}^{N \times N}$: Sparse adjacency matrix
- $\mathbf{A}_{i, j}=1$ if an edge exists between nodes i and j, otherwise $\mathbf{A}_{i, j}=0$

A Quick Introduction to GNNs

- Graph $\mathcal{G}=(\mathbf{X}, \mathbf{A})$ with N nodes
- $\mathbf{X} \in \mathbb{R}^{N \times F}$: Dense node feature matrix with F-dimensional features
- $\mathbf{A} \in\{0,1\}^{N \times N}$: Sparse adjacency matrix
- $\mathbf{A}_{i, j}=1$ if an edge exists between nodes i and j, otherwise $\mathbf{A}_{i, j}=0$
- GNN Layer Update
- $\mathbf{H}^{(\ell+1)}=\sigma\left(\mathbf{A} \mathbf{H}^{(\ell)} \boldsymbol{\Theta}^{(\ell)}\right)$
- Initial node representations: $\mathbf{H}^{(0)}:=\mathbf{X}$
- Weights: $\Theta^{(\ell)} \in \mathbb{R}^{D \times D}$ at layer ℓ
- Non-linearity: $\sigma(\cdot)$

Figure: Animation of message-passing.

The Memory Bottleneck of GNNs

- Memory usage of activations
- During the forward-pass all intermediate results $\left(\mathbf{H}^{(\ell)} \mathbf{\Theta}^{(\ell)}\right) \in \mathbb{R}^{N \times D}$ and node embedding matrices $\mathbf{H}^{(\ell)} \in \mathbb{R}^{N \times D}$ are stored in memory.
- Results in $\mathcal{O}(L N D)$ space complexity, with L being the number of layers.
- For this reason we focus on compressing activation maps.

Random projection

- Projection of the activations into a lower-dimensional space
- $\mathbf{H}_{\text {proj }}^{(\ell)}=\operatorname{RP}\left(\mathbf{H}^{(\ell)}\right)=\mathbf{H}^{(\ell)} \mathbf{R}$ where $\mathbf{R} \in \mathbb{R}^{D \times R}$ is the normalized Rademacher matrix with $R<D$ (Achlioptas 2001).
- \mathbf{R} has the following property: $\mathbb{E}\left[\mathbf{H}^{(\ell)} \mathbf{R} \mathbf{R}^{\top}\right]=\mathbb{E}\left[\mathbf{H}^{(\ell)} \mathbf{I}\right]=\mathbb{E}\left[\mathbf{H}^{(\ell)}\right]$

Random projection

- Projection of the activations into a lower-dimensional space
- $\mathbf{H}_{\text {proj }}^{(\ell)}=\operatorname{RP}\left(\mathbf{H}^{(\ell)}\right)=\mathbf{H}^{(\ell)} \mathbf{R}$ where $\mathbf{R} \in \mathbb{R}^{D \times R}$ is the normalized Rademacher matrix with $R<D$ (Achlioptas 2001).
- \mathbf{R} has the following property: $\mathbb{E}\left[\mathbf{H}^{(\ell)} \mathbf{R} \mathbf{R}^{\top}\right]=\mathbb{E}\left[\mathbf{H}^{(\ell)} \mathbf{I}\right]=\mathbb{E}\left[\mathbf{H}^{(\ell)}\right]$
- For this reason, R defines the projected dimensionality.

Stochastic Rounding

- Maps activations from FLOAT32 to lower precision integers

Stochastic Rounding

- Maps activations from FLOAT32 to lower precision integers
- The quantization, using b bits, consists of mapping your activations $\mathbf{h} \in \mathbb{R}^{D}$ into $B=2^{b}-1$ buckets and then rounding them to an integer. Specifically:

Stochastic Rounding

- Maps activations from FLOAT32 to lower precision integers
- The quantization, using b bits, consists of mapping your activations $\mathbf{h} \in \mathbb{R}^{D}$ into $B=2^{b}-1$ buckets and then rounding them to an integer. Specifically:

1. A shift and scale into $[0, B]$:

$$
\overline{\mathbf{h}}=(\mathbf{h}-\min (\mathbf{h})) \frac{B}{\max (\mathbf{h})-\min (\mathbf{h})}
$$

Figure: Example histogram of some $\overline{\mathbf{h}}$ with $b=2$. Colors denote what integer a value most likely stochastically rounds to.

Stochastic Rounding

- Maps activations from FLOAT32 to lower precision integers
- The quantization, using b bits, consists of mapping your activations $\mathbf{h} \in \mathbb{R}^{D}$ into $B=2^{b}-1$ buckets and then rounding them to an integer. Specifically:

1. A shift and scale into $[0, B]$:

$$
\overline{\mathbf{h}}=(\mathbf{h}-\min (\mathbf{h})) \frac{B}{\max (\mathbf{h})-\min (\mathbf{h})}
$$

2. A stochastic rounding (SR) operation denoted by $L \cdot 7$:

$$
\mathbf{h}_{\mathrm{INT}}=\text { Quant }(\mathbf{h})=\lfloor\overline{\mathbf{h}}\rceil
$$

Figure: Example histogram of some $\overline{\mathbf{h}}$ with $b=2$. Colors denote what integer a value most likely stochastically rounds to.

Dequantization

- The quantized embeddings $\mathbf{h}_{\text {INT }}$ are dequantized in the backward-pass.

Dequantization

- The quantized embeddings $\mathbf{h}_{\text {INT }}$ are dequantized in the backward-pass.
- Dequantization linearly maps $\mathbf{h}_{\text {INT }}$ back to \mathbf{h} 's range, by performing the inverse transformation.

Dequantization

- The quantized embeddings $\mathbf{h}_{\text {INT }}$ are dequantized in the backward-pass.
- Dequantization linearly maps $\mathbf{h}_{\text {INT }}$ back to \mathbf{h} 's range, by performing the inverse transformation.
- Equation: $\hat{\mathbf{h}}=\frac{\max (\mathbf{h})-\min (\mathbf{h})}{B} \mathbf{h}_{\text {INT }}+\min (\mathbf{h})$.

Dequantization

- The quantized embeddings $\mathbf{h}_{\text {INT }}$ are dequantized in the backward-pass.
- Dequantization linearly maps $\mathbf{h}_{\text {INT }}$ back to \mathbf{h} 's range, by performing the inverse transformation.
- Equation: $\hat{\mathbf{h}}=\frac{\max (\mathbf{h})-\min (\mathbf{h})}{B} \mathbf{h}_{\text {INT }}+\min (\mathbf{h})$.
- Property: $\mathbb{E}[\hat{\mathbf{h}}]=\mathbf{h}$

Dequantization

- The quantized embeddings $\mathbf{h}_{\text {INT }}$ are dequantized in the backward-pass.
- Dequantization linearly maps $\mathbf{h}_{\text {INT }}$ back to \mathbf{h} 's range, by performing the inverse transformation.
- Equation: $\hat{\mathbf{h}}=\frac{\max (\mathbf{h})-\min (\mathbf{h})}{B} \mathbf{h}_{\text {INT }}+\min (\mathbf{h})$.
- Property: $\mathbb{E}[\hat{\mathbf{h}}]=\mathbf{h}$
- Stochastic rounding (SR) keeps $\hat{\mathbf{h}}$ unbiased, with rounding probability proportional to boundary proximity

Dequantization

- The quantized embeddings $\mathbf{h}_{\text {INT }}$ are dequantized in the backward-pass.
- Dequantization linearly maps $\mathbf{h}_{\text {INT }}$ back to \mathbf{h} 's range, by performing the inverse transformation.
- Equation: $\hat{\mathbf{h}}=\frac{\max (\mathbf{h})-\min (\mathbf{h})}{B} \mathbf{h}_{\text {INT }}+\min (\mathbf{h})$.
- Property: $\mathbb{E}[\hat{\mathbf{h}}]=\mathbf{h}$
- Stochastic rounding (SR) keeps $\hat{\mathbf{h}}$ unbiased, with rounding probability proportional to boundary proximity
- This also applies to non-integer rounding values.

Figure: Same $\overline{\mathbf{h}}$ as before, but with non-uniform bin widths (quantization boundaries).

Overview

Motivation

Background

Contributions

Block-wise Quantization
Variance Minimization

Summary and Conclusions

Block-wise quantization

- Taking inspiration from Chen et al. 2021; Dettmers et al. 2021, we group the input tensor such that G elements are quantized at a time.
- This is done with

$$
\mathbf{H}_{\mathrm{block}}^{(\ell)} \in \mathbb{R}^{\frac{N \cdot R}{G} \times G}:=\operatorname{reshape}\left(\mathbf{H}_{\mathrm{proj}}^{(\ell)}, G\right),
$$

where reshape denotes the reshape function as known from packages like Numpy or Pytorch.

- Since each quantization operation is done row-wise, this increases concurrency.

Figure: The matrix that has been reshaped to a lower row-count, also has fewer quantizations.

Results of block-wise quantization

	G/R	Accuracy \uparrow	S (e/s) \uparrow	S Impr. (\%)	M (MB) \downarrow	Impr. (\%)

Results of block-wise quantization

Quant.	G/R	Accuracy \uparrow	$\mathbf{S}(\mathrm{e} / \mathrm{s}) \uparrow$	S Impr. (\%)	M(MB) \downarrow	M Impr. (\%)
FP32	-	71.95 ± 0.16	13.07	-	786.22	-
INT2	1	71.16 ± 0.21	10.03	-	30.47	-
	2	71.16 ± 0.34	10.23	+2.00	27.89	-8.47
	4	71.17 ± 0.22	10.46	+4.29	26.60	-12.70
INT2	8	71.21 ± 0.39	10.54	+5.08	25.95	-14.83
	16	71.01 ± 0.19	10.55	+5.18	25.72	-15.59
	32	70.87 ± 0.29	10.54	+5.08	25.60	-15.98
	64	71.28 ± 0.25	10.54	+5.08	25.56	-16.11

Table: G / R denotes the factor by which we increase the dimensionality via block-wise quantization.
Standard deviations of test accuracy is computed over 10 runs

Variance minimization

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.

Variance minimization

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.
- In order to do this we need three components:

Variance minimization

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.
- In order to do this we need three components:

1. The distribution of activations (probability density function or pdf)

Variance minimization

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.
- In order to do this we need three components:

1. The distribution of activations (probability density function or pdf)
2. The variance induced as a function of the activation $(\operatorname{Var}(\lfloor h\rceil))$

Variance minimization

- While stochastic rounding (SR) is not biased, it does induce some variance.
- If we can minimize this variance, we can minimize the expected quantization error.
- Done by finding the quantization boundaries that minimize the variance.
- In order to do this we need three components:

1. The distribution of activations (probability density function or pdf)
2. The variance induced as a function of the activation $(\operatorname{Var}(\lfloor h\rceil))$
3. Through integration, we can use (1) and (2) to calculate the expected variance, which we then minimize as a function of the boundaries.

Distribution of the activations

- SR is performed on the normalized activations $\overline{\mathbf{H}}_{\text {proj }}^{(\ell)}$, which are all of the activations transformed into the range $[0, B]$.

Figure: Histogram of observed and theorized $\overline{\mathbf{H}}_{\text {proj }}^{(1)}$ in a GNN model on the OGB-Arxiv data.

Distribution of the activations

- SR is performed on the normalized activations $\overline{\mathbf{H}}_{\text {proj }}^{(\ell)}$, which are all of the activations transformed into the range $[0, B]$.
- Two PDF's are hypothesized: \mathcal{U} (EXACT)

Figure: Histogram of observed and theorized $\overline{\mathbf{H}}_{\text {proj }}^{(1)}$ in a GNN model on the OGB-Arxiv data.

Distribution of the activations

- SR is performed on the normalized activations $\overline{\mathbf{H}}_{\text {proj }}^{(\ell)}$, which are all of the activations transformed into the range $[0, B]$.
- Two PDF's are hypothesized: $\mathcal{U}(E X A C T)$ and $\mathcal{C N}$ (Ours).

Figure: Histogram of observed and theorized $\overline{\mathbf{F}}_{\text {proj }}^{(1)}$ in a GNN model on the OGB-Arxiv data.

Distribution of the activations

- SR is performed on the normalized activations $\overline{\mathbf{H}}_{\text {proj }}^{(\ell)}$, which are all of the activations transformed into the range $[0, B]$.
- Two PDF's are hypothesized: \mathcal{U} (EXACT) and $\mathcal{C N}$ (Ours).
- $\mathcal{C N}$ is the clipped normal distribution and is the result of clipping \mathcal{N} such that the support lies in $[0, B]$.
- Empirically we have shown that we can define $\mathcal{C N}$ just from the dimensionality D, that is

$$
\begin{aligned}
& \mathcal{C N}_{[1 / D]} \text { is the pdf of } y \text { given, } \\
& \qquad y=\min (\max (0, X), B), \quad X \sim \mathcal{N}(\mu, \sigma), \\
& \text { where } \mu=B / 2 \text { and } \sigma=-\mu / \Phi^{-1}(1 / D)
\end{aligned}
$$

Figure: Histogram of observed and theorized $\overline{\mathbf{H}}_{\text {proj }}^{(1)}$ in a GNN model on the OGB-Arxiv data.

Distribution of SR variance

- Using Xia et al. 2020, we can estimate the variance induced by SR.
- This turns out to be

$$
\operatorname{Var}(\lfloor h\rceil)=\sum_{i=1}^{i=B}\left(\delta_{i}\left(h-\alpha_{i-1}\right)-\left(h-\alpha_{i-1}\right)^{2}\right),
$$

where δ_{i} is the width of the bin containing h, and α_{i} is the starting position of the bin.

Figure: SR variance as a function of second (α) and third (β) boundary position.

Using the distributions to lessen variance induced by SR

- By combining the PDF of activations and the variance induced as a function of an activations $(\operatorname{Var}(\lfloor h\rceil))$, we get:

$$
\left.\left.\begin{array}{rl}
\mathbb{E}[\operatorname{Var}(\lfloor h\rceil)] & =\int_{0}^{\alpha}\left(\alpha \cdot h-h^{2}\right) \mathcal{C \mathcal { N }} \\
{[1 / D]}
\end{array}(h) d h\right]^{\beta}\left((\beta-\alpha)(h-\alpha)-(h-\alpha)^{2}\right) \mathcal{C} \mathcal{N}_{[1 / D]}(h) d h ~(h-\beta)^{2}\right) \mathcal{C N}_{[1 / D]}(h) d h
$$

- Using numerical integration we can minimize the above w.r.t. α and β (variance minimization), and cache the best boundaries for any D.

Results of variance minimization

Dataset Layer $\quad \mathbf{R} \quad \mathcal{U} \quad \mathcal{C N}{ }_{[1 / D]} \quad$ Reduction Factor (\times) \quad Var. Reduction (\%)

Results of variance minimization

Dataset	Layer	\mathbf{R}	\mathcal{U}	$\mathcal{C N}_{[1 / D]}$	Reduction Factor (\times)	Var. Reduction (\%)
Arxiv	layer 1	16	0.0495	0.0213	2.32	3.17
	layer 2	16	0.0446	0.0016	27.88	2.09
	layer 3	16	0.0451	0.0041	11.00	2.19
Flickr	layer 1	63	0.0674	0.0017	39.65	6.14
	layer 2	32	0.0504	0.0033	15.27	4.37

Table: Jensen-Shannon divergence measure for Uniform and Clipped Normal distributions compared to the normalized activations $\overline{\mathbf{h}}$ at each layer of the GNN for Arxiv and Flickr datasets.

Results of variance minimization

Dataset	Layer	\mathbf{R}	\mathcal{U}	$\mathcal{C N}_{[1 / D]}$	Reduction Factor (\times)	Var. Reduction (\%)
Arxiv	layer 1	16	0.0495	0.0213	2.32	3.17
	layer 2	16	0.0446	0.0016	27.88	2.09
	layer 3	16	0.0451	0.0041	11.00	2.19
Flickr	layer 1	63	0.0674	0.0017	39.65	6.14
	layer 2	32	0.0504	0.0033	15.27	4.37

Table: Jensen-Shannon divergence measure for Uniform and Clipped Normal distributions compared to the normalized activations $\overline{\mathbf{h}}$ at each layer of the GNN for Arxiv and Flickr datasets.

Quant.	G/R	Accuracy \uparrow	$\mathbf{S}(\mathrm{e} / \mathrm{s}) \uparrow$	\mathbf{S} Impr. (\%)	$\mathbf{M}(\mathrm{MB}) \downarrow$	M Impr. (\%)
FP32	-	71.95 ± 0.16	13.07	-	786.22	-
INT2	1	71.16 ± 0.21	10.03	-	30.47	-
INT2+VM	1	71.20 ± 0.19	9.16	-8.67	30.47	0.00

Overview

Motivation

Background

Contributions

Block-wise Quantization
Variance Minimization

Summary and Conclusions

Summary

- GNNs have seen a large increase in popularity withing the ML-field.

Summary

- GNNs have seen a large increase in popularity withing the ML-field.
- Unfortunately they can suffer from poor memory scaling.

Summary

- GNNs have seen a large increase in popularity withing the ML-field.
- Unfortunately they can suffer from poor memory scaling.
- EXACT (Liu et al. 2022) tries to alleviate this, via extreme activation compression

Summary

- GNNs have seen a large increase in popularity withing the ML-field.
- Unfortunately they can suffer from poor memory scaling.
- EXACT (Liu et al. 2022) tries to alleviate this, via extreme activation compression
- We try to show that you can improve this further, even in an already very compressed activation space.

Conclusion

- Significant memory reduction and slight runtime speedup achieved through block-wise quantization.

Conclusion

- Significant memory reduction and slight runtime speedup achieved through block-wise quantization.
- Non-uniform distribution of GNN activation maps demonstrated.

Conclusion

- Significant memory reduction and slight runtime speedup achieved through block-wise quantization.
- Non-uniform distribution of GNN activation maps demonstrated.
- Introduced variable and non-uniform bin widths in stochastic rounding to reduce quantization variance.

Conclusion

- Significant memory reduction and slight runtime speedup achieved through block-wise quantization.
- Non-uniform distribution of GNN activation maps demonstrated.
- Introduced variable and non-uniform bin widths in stochastic rounding to reduce quantization variance.
- Methods are model-agnostic: opportunities for applying these methods to other architectures and pre-trained networks.

Bibliography

－Achlioptas，Dimitris（2001）．＂Database－Friendly Random Projections＂．In：Proceedings of the Twentieth ACM SIGMOD－SIGACT－SIGART Symposium on Principles of Database Systems．PODS＇01．Santa Barbara，California，USA：Association for Computing Machinery，pp．274－281．ISBN：1581133618．DOI： 10．1145／375551．375608．URL：https：／／doi．org／10．1145／375551．375608．
目 Chen，Jianfei et al．（2021）．ActNN：Reducing Training Memory Footprint via 2－Bit Activation Compressed Training．arXiv： 2104.14129 ［cs．LG］．
目 Dettmers，Tim et al．（2021）．＂8－bit Optimizers via Block－wise Quantization＂．In：CoRR abs／2110．02861．arXiv：2110．02861．URL：https：／／arxiv．org／abs／2110．02861．
目 Liu，Zirui et al．（2022）．＂EXACT：Scalable Graph Neural Networks Training via Extreme Activation Compression＂．In：International Conference on Learning Representations．URL： https：／／openreview．net／forum？id＝vkaMaq95＿rX．
目 Xia，Lu et al．（2020）．Improved stochastic rounding．arXiv： 2006.00489 ［math．NA］．

Acknowledgements

- Partly funded by European Union's Horizon Europe Research and Innovation programme under grant agreements No. 101070284 and No. 101070408.
- Thanks to STIBOFONDEN for their generous support.
- Grateful for the collaboration at SAINTS Lab.
- Check out carbontracker.info for advancing CO2e reduction in ML.

Funded by the Horizon 2020
Framework Programme of the European Union

