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Motivation
• Graph Neural Networks (GNNs) have seen widespread use within many Machine

Learning (ML) applications

• GNNs do suffer from poor memory scaling w.r.t. the amount of nodes
• EXACT (Liu et al. 2022) addresses this through extreme activation compression
• We build upon this work with two key contributions

1. Block-wise quantization of GNNs
2. Variance minimization due to activation compression
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A Quick Introduction to GNNs
• Graph G = (X, A) with N nodes

• X ∈ RN×F : Dense node feature matrix with F -dimensional features
• A ∈ {0, 1}N×N : Sparse adjacency matrix
• Ai,j = 1 if an edge exists between nodes i and j, otherwise Ai,j = 0

U N I V E R S I T Y O F C O P E N H A G E N 18–04–2024 4U N I V E R S I T Y O F C O P E N H A G E N 18–04–2024 4



A Quick Introduction to GNNs
• Graph G = (X, A) with N nodes

• X ∈ RN×F : Dense node feature matrix with F -dimensional features
• A ∈ {0, 1}N×N : Sparse adjacency matrix
• Ai,j = 1 if an edge exists between nodes i and j, otherwise Ai,j = 0

• GNN Layer Update
• H(`+1) = σ

(
A H(`) Θ(`)

)
• Initial node representations: H(0) := X
• Weights: Θ(`) ∈ RD×D at layer `
• Non-linearity: σ(·)

Figure: Animation of message-passing.
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The Memory Bottleneck of GNNs

• Memory usage of activations
• During the forward-pass all intermediate results

(
H(`)Θ(`)

)
∈ RN×D and node

embedding matrices H(`) ∈ RN×D are stored in memory.
• Results in O (LND) space complexity, with L being the number of layers.
• For this reason we focus on compressing activation maps.
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Random projection

• Projection of the activations into a lower-dimensional space
• H(`)

proj = RP(H(`)) = H(`)R where R ∈ RD×R is the normalized Rademacher matrix
with R < D (Achlioptas 2001).

• R has the following property: E[H(`)RR>] = E[H(`)I] = E[H(`)]

• For this reason, R defines the projected dimensionality.
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Stochastic Rounding

• Maps activations from FLOAT32 to lower
precision integers

• The quantization, using b bits, consists
of mapping your activations h ∈ RD into
B = 2b − 1 buckets and then rounding
them to an integer. Specifically:

1. A shift and scale into [0, B]:
h̄ = (h − min(h)) B

max(h)−min(h)
2. A stochastic rounding (SR) operation

denoted by b·e:
hINT = Quant (h) =

⌊
h̄

⌉

Figure: Example histogram of some h̄ with b = 2.
Colors denote what integer a value most likely
stochastically rounds to.
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Dequantization

• The quantized embeddings hINT are dequantized in the
backward-pass.

• Dequantization linearly maps hINT back to h’s range,
by performing the inverse transformation.

• Equation: ĥ = max(h)−min(h)
B hINT + min(h).

• Property: E[ĥ] = h
• Stochastic rounding (SR) keeps ĥ unbiased, with

rounding probability proportional to boundary
proximity

• This also applies to non-integer rounding values.

Figure: Same h̄ as before, but with
non-uniform bin widths
(quantization boundaries).
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• Equation: ĥ = max(h)−min(h)
B hINT + min(h).

• Property: E[ĥ] = h
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rounding probability proportional to boundary
proximity

• This also applies to non-integer rounding values. Figure: Same h̄ as before, but with
non-uniform bin widths
(quantization boundaries).

U N I V E R S I T Y O F C O P E N H A G E N 18–04–2024 9



Overview

Motivation

Background

Contributions
Block-wise Quantization
Variance Minimization

Summary and Conclusions

U N I V E R S I T Y O F C O P E N H A G E N 18–04–2024 10U N I V E R S I T Y O F C O P E N H A G E N 18–04–2024 10



Block-wise quantization

• Taking inspiration from Chen et al. 2021; Dettmers
et al. 2021, we group the input tensor such that G
elements are quantized at a time.

• This is done with

H(`)
block ∈ R

N·R
G ×G := reshape

(
H(`)

proj, G
)

,

where reshape denotes the reshape function as known
from packages like Numpy or Pytorch.

• Since each quantization operation is done row-wise,
this increases concurrency.

4 rows and thus 
4 quantizations

2 rows and thus 
2 quantizations

Figure: The matrix that has been
reshaped to a lower row-count,
also has fewer quantizations.
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Results of block-wise quantization

Quant. G/R Accuracy ↑ S (e/s) ↑ S Impr. (%) M(MB) ↓ M Impr. (%)

FP32 – 71.95 ± 0.16 13.07 - 786.22 -
INT2 1 71.16 ± 0.21 10.03 - 30.47 -

INT2

2 71.16 ± 0.34 10.23 +2.00 27.89 -8.47
4 71.17 ± 0.22 10.46 +4.29 26.60 -12.70
8 71.21 ± 0.39 10.54 +5.08 25.95 -14.83
16 71.01 ± 0.19 10.55 +5.18 25.72 -15.59
32 70.87 ± 0.29 10.54 +5.08 25.60 -15.98
64 71.28 ± 0.25 10.54 +5.08 25.56 -16.11

Table: G/R denotes the factor by which we increase the dimensionality via block-wise quantization.
Standard deviations of test accuracy is computed over 10 runs
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Variance minimization
• While stochastic rounding (SR) is not biased, it does induce some variance.
• If we can minimize this variance, we can minimize the expected quantization error.
• Done by finding the quantization boundaries that minimize the variance.

• In order to do this we need three components:

1. The distribution of activations (probability density function or pdf)
2. The variance induced as a function of the activation (Var(bhe))
3. Through integration, we can use (1) and (2) to calculate the expected variance, which we

then minimize as a function of the boundaries.
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Distribution of the activations
• SR is performed on the normalized activations H(`)

proj, which
are all of the activations transformed into the range [0, B].

• Two PDF’s are hypothesized: U (EXACT)

and CN (Ours).

• CN is the clipped normal distribution and is the result of
clipping N such that the support lies in [0, B].

• Empirically we have shown that we can define CN just
from the dimensionality D, that is

CN [1/D] is the pdf of y given,

y = min(max(0, X), B), X ∼ N (µ, σ),
where µ = B/2 and σ = −µ/Φ−1(1/D).

Figure: Histogram of observed
and theorized H(1)

proj in a GNN
model on the OGB-Arxiv data.
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Distribution of SR variance
• Using Xia et al. 2020, we can estimate the variance induced by SR.
• This turns out to be

Var(bhe) =
∑i=B

i=1
(
δi(h − αi−1) − (h − αi−1)2)

,

where δi is the width of the bin containing h, and αi is the starting position of the bin.

Figure: SR variance as a function of second (α) and third (β) boundary position.
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Using the distributions to lessen variance induced by SR

• By combining the PDF of activations and the variance induced as a function of an
activations (Var(bhe)), we get:

E[Var(bhe)] =
∫ α

0
(α · h − h2)CN [1/D](h) dh

+
∫ β

α

(
(β − α)(h − α) − (h − α)2

)
CN [1/D](h) dh

+
∫ B

β

(
(B − β)(h − β) − (h − β)2

)
CN [1/D](h) dh

• Using numerical integration we can minimize the above w.r.t. α and β (variance
minimization), and cache the best boundaries for any D.
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Results of variance minimization

Dataset Layer R U CN [1/D] Reduction Factor (×) Var. Reduction (%)

Arxiv layer 1 16 0.0495 0.0213 2.32 3.17
layer 2 16 0.0446 0.0016 27.88 2.09
layer 3 16 0.0451 0.0041 11.00 2.19

Flickr layer 1 63 0.0674 0.0017 39.65 6.14
layer 2 32 0.0504 0.0033 15.27 4.37

Table: Jensen-Shannon divergence measure for Uniform and Clipped Normal distributions
compared to the normalized activations h̄ at each layer of the GNN for Arxiv and Flickr datasets.

Quant. G/R Accuracy ↑ S (e/s) ↑ S Impr. (%) M(MB) ↓ M Impr. (%)

FP32 – 71.95 ± 0.16 13.07 - 786.22 -
INT2 1 71.16 ± 0.21 10.03 - 30.47 -

INT2+VM 1 71.20 ± 0.19 9.16 -8.67 30.47 0.00
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Quant. G/R Accuracy ↑ S (e/s) ↑ S Impr. (%) M(MB) ↓ M Impr. (%)

FP32 – 71.95 ± 0.16 13.07 - 786.22 -
INT2 1 71.16 ± 0.21 10.03 - 30.47 -

INT2+VM 1 71.20 ± 0.19 9.16 -8.67 30.47 0.00
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Summary

• GNNs have seen a large increase in popularity withing the ML-field.

• Unfortunately they can suffer from poor memory scaling.
• EXACT (Liu et al. 2022) tries to alleviate this, via extreme activation compression
• We try to show that you can improve this further, even in an already very compressed

activation space.
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Conclusion
• Significant memory reduction and slight runtime speedup achieved through block-wise

quantization.

• Non-uniform distribution of GNN activation maps demonstrated.
• Introduced variable and non-uniform bin widths in stochastic rounding to reduce

quantization variance.
• Methods are model-agnostic: opportunities for applying these methods to other

architectures and pre-trained networks.
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