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Modelling genetic effects on a trait

almost no limit to the amount of measured genetic variants (hundreds of millions;
more genetic variants ⟹ better generalization), but limited sample size
Data format (genotype matrices normalized column-wise):

X𝑖𝑗 =
⎧{
⎨{⎩

2, 𝑎𝑎
1, 𝐴𝑎
0, 𝐴𝐴

⟹ {0, 1, 2}𝑁×𝑃 ∋ X =
⎡
⎢⎢
⎣

1 2 … 0
0 0 … 1
⋮ ⋮ ⋱ ⋮
0 2 … 2

⎤
⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟

∼ 106

⎫}}
⎬}}⎭

∼ 105

Bayesian Linear Regression for the individual-level model:
𝑦𝑖 = ⟨X(𝑖, ∶), 𝛽⟩ + 𝜖𝑖 for 𝑖 ∈ [𝑁] = {1, … , 𝑁} and

𝛽𝑗 ∼ (1 − 𝜆) ⋅ 𝛿0(⋅) + 𝜆 ⋅
𝐿

∑
𝑖=1

𝜋𝑖 ⋅N (⋅, 0, 𝜎2
𝑖 ), 𝜖𝑖 ∼ N (0, 𝛾𝜖

−1)
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Prior Work

[regenie, PLINK]
[LDpred2, SBayesR, SBayesRC, GMRM]
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2. Approximate Message Passing

family of iterative algorithms that incorporate structural information about genetic
signal

linear models [Kab03, BM12, BM11, DMM09, KMS+12], generalized linear
models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation
achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]

Inference of Genetic Effects via Approximate Message Passing 6 / 13



2. Approximate Message Passing

family of iterative algorithms that incorporate structural information about genetic
signal
linear models [Kab03, BM12, BM11, DMM09, KMS+12], generalized linear
models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation

achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]

Inference of Genetic Effects via Approximate Message Passing 6 / 13



2. Approximate Message Passing

family of iterative algorithms that incorporate structural information about genetic
signal
linear models [Kab03, BM12, BM11, DMM09, KMS+12], generalized linear
models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation
achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]

Inference of Genetic Effects via Approximate Message Passing 6 / 13



2. (EM) Vector AMP

Problem: correlation structure between columns of X?

X right-orthogonally invariant [RSF16, T17]: distributions of objects in the
high-dimensional limit precisely characterized by a state evolution recursion

Denosing step LMMSE step

learns and incorporates
knowledge of effects
distribution 𝑝(𝛽)

takes into account corre-
lation structure between
genetic markers
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genomicVAMP
1. Filtering the normalized genotype

matrix for first-degree relatives to
reduce the correlation between rows
(∼ 400, 000 out of 460, 000
participants from UK Biobank study)

2. Initialization matters (sparsity ∼ 50k
genetic positions, geometric sequence
for prior mixture probabilites and
variances)

3. Auto-tuning of denoising signal error
precision [FSR+17] combined with
EM steps [VS12, FS17] that updates
estimate of 𝑝(𝛽)

4. Damping of denoised marker effects
(momentum)

5. Warm-start of conjugate gradients for
LMMSE calculation [SD20]

6. Re-using Hutchinson estimator
7. MPI + OpenMP
8. data processing by using a lookup

table + SIMD:

( 0 1 0 0 1 1 1 0 )
↧

( NaN 2 0 1 )
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3. Association testing 𝑦(𝑖) ∶= 𝑦 − X\chr(𝑖) ̂𝛽\chr(𝑖) ∼ X(∶, 𝑖)
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Prediction accuracy for BMI (Body Mass Index)

0.1 0.11 0.12 0.13 0.14
LDpred2

SBayesR

GMRM 2.17M

gVAMP 8M

out-of-sample 𝑅2
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LDpred2

SBayesR

GMRM 2.17M

gVAMP 8M

𝑟 ∶= 𝑋𝑇 𝑦/𝑁 and approx. of correlation matrix, R̂

out-of-sample 𝑅2
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Prediction accuracy

SBP: Systolic blood pressure
RBC: Red blood cell count
MCV: Mean corpuscular volume
MCH: Mean corpuscular
haemoglobin
HT: Standing height
HDL: High density lipoprotein
HbA1c: Glycated haemoglobin
FVC: Forced vital capacity
EOSI: Eosinophill count
DBP: Diastolic blood pressure
CHOL: Cholesterol
BMI: Body mass index
BMD: Heel bone mineral density
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Summary & Future Directions

gVAMP requires less than a day to
model 8.4 million imputed genetic
variants jointly in over 400, 000 UK
Biobank participants. Other methods
such as regenie, GMRM can not do
this
exhibits lower FDR, greater TPR than
regenie
capable of analysing heterogeneous
data (WES, X chromosome data)

1. summary statistics & meta analysis
models

2. time-to-event models

log 𝑦𝑖 = 𝜇 + ⟨𝑥𝑖, 𝛽⟩ + 𝑤𝑖
𝛼 + 𝐾

𝛼

3. using gVAMP on WGS data (between
10 − 12M genetic variants)

4. low-complexity alternatives to
VAMP?
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gVAMP git repo: https://github.com/medical-genomics-group/gVAMP

The End

Thanks for your
attention!
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REGENIE overview
Step 1: (Inference)
● (Ridge regression): reads 𝑃 markers in blocks of 𝐵 = 1000 consecutive markers and

X =
⎛⎜⎜⎜
⎝

𝐵 𝐵 … 𝐵
0 4.242 … −1.414

−1.414 −1.414 … 0
⋮ ⋮ ⋱ ⋮

−1.414 4.242 … 1.414

⎞⎟⎟⎟
⎠

for 𝜏 ∈ {𝜏1, … , 𝜏𝐽} and block index 𝑏 calculate ̂𝛽𝜏,𝑏 = (X𝑇
𝑏 X𝑏 + 𝜏𝐼)−1X𝑇

𝑏 𝑦
● (Cross-validation): fitting model 𝑦 = 𝑊𝛼 + 𝜀 using ridge with cross-validation,

where 𝑊 contains 𝐽𝑀/𝐵 predictors stacked
Step 2: Single-variant association testing using Leave-One-Chromosome-Out
(LOCO) approach
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Leave-One-Out (LOO) testing approach

using VAMP we obtain estimators ̂𝛽 for the effect sizes in a linear model

𝑦 = X𝛽 + 𝜖, 𝜖 ∼ N (0, 𝜎2
𝜖 𝐼𝑁).

Leave-One-Out (LOO) p-values for the statistical test 𝐻0 ∶ 𝛽𝑖 = 0 are calculated
as a p-value from t-test for testing whether the slope of a regression line is zero
when regressing

𝑦(𝑖) ∶= 𝑦 − X\𝑖 ̂𝛽\𝑖 on X𝑖

(X\𝑖 = all columns of X except the i-th one)
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Parallelization of the code

X =
⎛⎜⎜⎜⎜
⎝

0 4.242 … −1.414
−1.414 −1.414 … 0

⋮ ⋮ ⋱ ⋮
−1.414 4.242 … 1.414

⎞⎟⎟⎟⎟
⎠

each MPI worker sees approximately
equal number of consecutive columns
(X is stored in a column-major
format)
𝑣 ↦ X𝑇 𝑣 operation is brought down
to the level of single markers and
combined with OpenMP reduction

𝑢 ↦ X𝑢 = ∑𝑊
𝑤=1 X𝑤𝑢𝑤 →

2 ⋅ (𝑊 − 1) ⋅ 𝑁 doubles sent for
communication
X is being streamed-in using a lookup
table (no additional memory is
required, performing 4 basic
operations at once):
( 0 1 0 0 1 1 1 0 ) ↦
( NaN 2 0 1 )
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Autosomal imputed data + X + WES analysis
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3. Association testing
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3. Association testing
gVAMP
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Association testing: gVAMP vs GMRM
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