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Agenda

Q What is a genome-wide association study (GWAS)?

€ AMP overview. Making AMP approach scalable and stable for the GWAS
inference task

e Comparison to the state-of-the-art methods (regenie, GMRM)
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c Genome-Wide Association Studies
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c Genome-Wide Association Studies

Step 1: Genome-wide association studies in adult populations from the UK Biobank

i —
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o)

Low genetic  High genetic Tz
risk risk
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Modelling genetic effects on a trait
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Modelling genetic effects on a trait

m almost no limit to the amount of measured genetic variants (hundreds of millions;
more genetic variants = better generalization), but limited sample size
m Data format (genotype matrices normalized column-wise):

2 aa 1 2 ..0
NxP 00 .. 1 5
X;=141Aa = {0,1,2} >X= |, [ 7 | p~10
0, AA 002 .. 2
— —
~ 106
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m Data format (genotype matrices normalized column-wise):

2 aa 1.8%6 4242 .. —0.472
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0, AA 0472 4242 .. 49243

~ 106

m Bayesian Linear Regression for the individual-level model:
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Modelling genetic effects on a trait

m almost no limit to the amount of measured genetic variants (hundreds of millions;
more genetic variants = better generalization), but limited sample size
m Data format (genotype matrices normalized column-wise):

2 aa 1.8%6 4242 .. —0.472
X, — 41 Aa L oxo oA e L
0, AA 0472 4242 .. 49243

~ 106

m Bayesian Linear Regression for the individual-level model:
y; = (X(i,:),8) +¢ fori e [N] ={1,...,N} and

L
6] ~ (1 _)\) ’ 50() + A Zﬂ—i 'N<'7070-712>7 €; NN(Ovﬁye_l)
i=1
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Prior Work

P Phenotypes
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[regenie, PLINK]

[LDpred2, SBayesR, SBayesRC, GMRM]
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e Approximate Message Passing

m family of iterative algorithms that incorporate structural information about genetic
signal
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e Approximate Message Passing

m family of iterative algorithms that incorporate structural information about genetic
signal

m linear models [Kab03, BM12, BM11, DMMQ9, KMS+12], generalized linear
models [BKM+19, MLKZ20, Ranll, SR14, SC19] and low-rank matrix estimation
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e Approximate Message Passing

m family of iterative algorithms that incorporate structural information about genetic
signal

m linear models [Kab03, BM12, BM11, DMMQ9, KMS+12], generalized linear
models [BKM+19, MLKZ20, Ranll, SR14, SC19] and low-rank matrix estimation

m achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]
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€ (EM) Vector AMP

m Problem: correlation structure between columns of X?
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€ (EM) Vector AMP

m Problem: correlation structure between columns of X?

m X right-orthogonally invariant [RSF16, T17]: distributions of objects in the
high-dimensional limit precisely characterized by a state evolution recursion

[ Denosing step g LMMSE step }

learns and incorporates takes into account corre-
knowledge of effects lation structure between
distribution p(p3) genetic markers
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genomicVAMP

1. Filtering the normalized genotype
matrix for first-degree relatives to
reduce the correlation between rows
(~ 400,000 out of 460,000
participants from UK Biobank study)
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genomicVAMP

1.

Filtering the normalized genotype
matrix for first-degree relatives to
reduce the correlation between rows
(~ 400,000 out of 460,000
participants from UK Biobank study)

. Initialization matters (sparsity ~ 50k

genetic positions, geometric sequence
for prior mixture probabilites and
variances)

Auto-tuning of denoising signal error
precision [FSR+17] combined with
EM steps [VS12, FS17] that updates
estimate of p(53)
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genomicVAMP

1. Filtering the normalized genotype 4. Damping of denoised marker effects
matrix for first-degree relatives to (momentum)
reduce the correlation between rows 5. Warm-start of conjugate gradients for
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genomicVAMP

1. Filtering the normalized genotype
matrix for first-degree relatives to
reduce the correlation between rows
(~ 400,000 out of 460,000
participants from UK Biobank study)

2. Initialization matters (sparsity ~ 50k
genetic positions, geometric sequence
for prior mixture probabilites and
variances)

3. Auto-tuning of denoising signal error
precision [FSR+17] combined with
EM steps [VS12, FS17] that updates
estimate of p(53)

Inference of Genetic Effects via Approximate Message Passing

. Damping of denoised marker effects

(momentum)

. Warm-start of conjugate gradients for

LMMSE calculation [SD20]

6. Re-using Hutchinson estimator
7. MPI + OpenMP

8. data processing by using a lookup

table 4+ SIMD:

(0 170 0J1 1J1 0))
!
(EDEOD)
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e Association testing Y =y — X i Prets) ~ X1

a b c
1.00
600~
0.75
[
g . %
o 3 ]
2 )5 2 400- - gVAMP(LOCO)
= K £
§ 0.50 s E + gVAMP(SE)
Q
g £ E = REGENIE(LOCO)
= 200~
0.25
000 4 ' ' 0- ] U
0.00 0.25 0.50 0.75 1.00 TPR FDR REGENIE  gVAMP

False positive rate
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Prediction accuracy for BMI (Body Mass Index)

gVAMP 8M -
\
GMRM 2.17M

\
SBayesR -

LDpred2 -

| | |
0.1 0.11 0.12 0.13

out-of-sample R?
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Prediction accuracy for BMI (Body Mass Index)

gVAMP 8M -

‘ ~

r:= XTy/N and approx. of correlation matrix, R
GMRM 2.17TM —

\
SBayesR -

LDpred2 -

| | | |
0.1 0.11 0.12 0.13 0.14

out-of-sample R?
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Prediction accuracy

SBP: Systolic blood pressure

RBC: Red blood cell count Rec-
MCV: Mean corpuscular volume mev-
MCH: Mean corpuscular MCH-
haemoglobin Hr-
HT: Standing height g Mo
HDL: High density lipoprotein gHbAlc—
HbAlc: Glycated haemoglobin 5 e
FVC: Forced vital capacity eosi-
EOSI: Eosinophill count bP-
DBP: Diastolic blood pressure cHoL-
CHOL: Cholesterol BMi-
BMI: Body mass index o

BMD: Heel bone mineral density

Inference of Genetic Effects via Approximate Message Passing

model
LDPred2
SBayesR
GMRM
GVAMP (8M)

0.2 04 0.6
polygenic score prediction accuracy
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Summary & Future Directions

1. summary statistics & meta analysis
models
e access only to r := X7y /N and an
approximation of a correlation matrix,

m gVAMP requires less than a day to
model 8.4 million imputed genetic
variants jointly in over 400,000 UK

Biobank participants. Other methods called R . . .
such as regenie, GMRM can not do e merging information from different
this ' databases/cohorts
m exhibits lower FDR, greater TPR than
regenie

m capable of analysing heterogeneous
data (WES, X chromosome data)
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1. summary statistics & meta analysis

m gVAMP requires less than a day to
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Summary & Future Directions

m gVAMP requires less than a day to 1. summary statistics & meta analysis

model 8.4 million imputed genetic models
variants jointly in over 400,000 UK 2. time-to-event models
Biobank participants. Other methods w, K
such as regenie, GMRM can not do logy; =+ (z;, 8) + j + o
this
m exhibits lower FDR, greater TPR than .
regenie 3. using gVAMP on WGS data (between

_ 10 — 12M genetic variants)
m capable of analysing heterogeneous

data (WES, X chromosome data) 4. low-complexity alternatives to

VAMP?
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gVA M P git FepPo: nttps://github.com/medical-genomics-group/gVAMP

jcal-genomics-group / VAMP.

Inference of Genetic Effects via Approximate Message Passing
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gVA M P git FepPo: nttps://github.com/medical-genomics-group/gVAMP
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The End

Thanks for your
attention!
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REGENIE overview

m Step 1: (Inference)
* (Ridge regression): reads P markers in blocks of B = 1000 consecutive markers and

B B B
0 4.242 ... —1.414
—1.414 —-1.414 ..
X = 5 2 .. 0
—1.414 4242 ... 1414

for 7 € {ry,...,7;} and block index b calculate ﬁ;,b = (XX, + 7)1 Xly
® (Cross-validation): fitting model y = Wa + ¢ using ridge with cross-validation,
where W contains JM /B predictors stacked

m Step 2: Single-variant association testing using Leave-One-Chromosome-Out
(LOCO) approach

Inference of Genetic Effects via Approximate Message Passing 2/7



Leave-One-Out (LOO) testing approach

m using VAMP we obtain estimators B for the effect sizes in a linear model
y=XpB+e, €e~N(0,02Iy).

m Leave-One-Out (LOO) p-values for the statistical test H,, : 5; = 0 are calculated
as a p-value from t-test for testing whether the slope of a regression line is zero
when regressing

Yyl o=y — X\iﬁ\i on X,

1

(X,; = all columns of X except the i-th one)
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Parallelization of the code

0 4242 .. —1414
1414 —1414 .. 0
X = . . . . luHXuzzy: XUy —
1414 4242 .. 1414 2-(W —1)- N doubles sent for

communication

m X is being streamed-in using a lookup
table (no additional memory is
required, performing 4 basic
operations at once)

0 1]0 01 1 10
m v — XTv operation is brought down ([ I I I j>

to the level of single markers and ()

combined with OpenMP reduction

m each MPI worker sees approximately
equal number of consecutive columns
(X is stored in a column-major
format)
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Autosomal imputed data + X + WES analysis

a b
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
800~
40- B
40+
. 600~
P
2
S
30- 3
30- . g
o
2 ® . 2 400-
© S o
g ] &
& 2 . 4
) . & . »
20~ =}
)
<} . 20" -
2 K K . 200
$ o . . R .
~ ° N .
10- * ~ - . ! 0-

wes- i
X chr- F

i [
i

autosomes -

SRR TR I . ‘. s
5& 'y ".! o tﬁ‘ ‘-‘: -' ¥ L YO
MEGAsE Rl Aa

Inference of Genetic Effects via Approximate Message Passing



e Association testing
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e Association testing

a b
gVvAMP gVvAMP gVvAMP REGENIE GMRM 0.35- .
887,060 2,174,071 8,430,446 887,060 2,174,071 > .
80.34-
0.4- =1
® P S 033- ’ @
03- . s '
{ 2 0.32-
{ ] ! 5 @
0.2- k=]
(7]
Loa

0.1-
e ® @& :.“30'-

.0- . ' . ' ' ' . . . gvAMP  gVAMP GMRM
TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR 8,430,446 2,174,071 2,174,071
c
887,060 2,174,071 8,430,446
100 — -
2 30- -
5
5] - VAMP
< Q9
10 @ REGENE
H . co® ‘ H @® GMRM
R e
= s =
= z x S = x > = x
< w = < w = < w =
2 9 0 5 9 0 s o 0
o ['4 ['4
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Association testing: gVAMP vs GMRM

gVAMP gVAMP GMRM
8,430,446 2,174,071 2,174,071

0.15- '

®
0.10- ‘

< ... 3
0.05- o
.. [C ) PSS )

0.00- @

0.15- o
0.10-

ya4d

0.05- ® .

0.00-

1%-
01%-
05%-
0.1%-
0.5%-
1%-
5%-

0.5%-
95%
90%
80% -
50%-

0 01%-.
0.05%-.
0.1%- @

significance threshold
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