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Creating a multilingual, multi-speaker (MM) text-to-speech (TTS)
system is challenging due to the difficulties in collecting polyglot
data from multiple speakers.
To address this issue, we utilize a voice conversion (VC)-based
data augmentation method to train the MM-TTS model.
However, simply including the augmented dataset with the
recorded dataset can cause a quality degradation issue. In our
case, we observed muffled sound issue in synthesized audio.
Therefore, we use posterior embeddings (1) to capture the
acoustic dissimilarity between the recorded and augmented
datasets and (2) to utilize a posterior embedding derived from
only the recorded data when synthesizing audio.

Model

Voice Conversion for Data Augmentation

Many-to-many Scyclone model with pitch augmentation [1]

 Each of monolingual training corpus is reproduced by
adjusting pitch values in several semitone-levels to cover a
variety of prosodies from multiple speaker and languages.

Dataset

Monolingual internal dataset.
Korean, English, Japanese, with a single male and female

speaker for each.

Process

Number of utterances per speaker: 500 utterances

from five other speakers, resulting in a total of 2,500
augmented data. This augmentation process is repeated for
each speaker in the dataset.

 The original set of 500 sentences is augmented with voices

Outcome: Through this augmentation, each speaker’s original

dataset is expanded by a factor of six (3,000), enhancing the
diversity and volume of data available for model training.

Unified phoneme representation
* We integrate 42 English,

47 Korean, and 50 Japanese
phonemes into a unified set
consisting of 102 phonemes.
We follow the International
Phonetic Alphabet (IPA) [2]
for merging phonemes from
different languages and
phonemes with similar
pronunciations (e.g. ‘m’, ‘n’ in
nasal sound) are combined.
(details are provided in the
Tablel)

Multilingual, multi-speaker TTS system

Tablel: Unified phonemes table
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* We train the posterior encoder [3] to focus on capturing the
distributions of recorded and augmented data by providing it
with explicit speaker and language information.

* During inference, the encoder selectively retrieves posterior
embeddings from the entire recorded dataset within the training
set, averaging these to obtain the final posterior embedding.

* Asillustrated in the Figurel, data clusters in the latent space are
distinguishable based on their origin from either recorded or
augmented data.
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Figurel: t-SNE plots

Text-to-speech model

 The system includes a context encoder, a duration predictor, an
autoregressive decoder, and a PWG vocoder [4],
complemented by a speaker and language look-up table as well
as a posterior encoder.
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Figure2: Model diagram

* Compared models
e CM-TTS: cross-lingual, multi-speaker TTS model
e MM-TTS: VC-augmented multilingual, multi-speaker TTS model
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