ENHANCING MULTILINGUAL TTS WITH VOICE CONVERSION BASED DATA AUGMENTATION AND POSTERIOR EMBEDDING

Hyun-Wook Yoon, Jin-Seob Kim, Ryuichi Yamamoto, Ryo Terashima, Chan-Ho Song, Jae-Min Kim, Eunwoo Song

< Demo >

Motivation

LY

- Creating a multilingual, multi-speaker (MM) text-to-speech (TTS) system is challenging due to the difficulties in collecting polyglot data from multiple speakers.
- To address this issue, we utilize a voice conversion (VC)-based data augmentation method to train the MM-TTS model.

Posterior encoder

- We train the posterior encoder [3] to focus on capturing the distributions of recorded and augmented data by providing it with explicit speaker and language information.
- During inference, the encoder selectively retrieves posterior embeddings from the entire recorded dataset within the training
- However, simply including the augmented dataset with the recorded dataset can cause a quality degradation issue. In our case, we observed muffled sound issue in synthesized audio.
- Therefore, we use posterior embeddings (1) to capture the acoustic dissimilarity between the recorded and augmented datasets and (2) to utilize a posterior embedding derived from only the recorded data when synthesizing audio.

Voice Conversion for Data Augmentation

- Model
 - Many-to-many Scyclone model with pitch augmentation [1]
 - Each of monolingual training corpus is reproduced by adjusting pitch values in several semitone-levels to cover a variety of prosodies from multiple speaker and languages.
- Dataset
 - Monolingual internal dataset.

NAVER Cloud

Korean, English, Japanese, with a single male and female speaker for each.
Number of utterances per speaker: 500 utterances

- set, averaging these to obtain the final posterior embedding.
- As illustrated in the Figure1, data clusters in the latent space are distinguishable based on their origin from either recorded or augmented data.

- Text-to-speech model
 - The system includes a context encoder, a duration predictor, an autoregressive decoder, and a PWG vocoder [4], complemented by a speaker and language look-up table as well

- Process
 - The original set of 500 sentences is augmented with voices from five other speakers, resulting in a total of 2,500 augmented data. This augmentation process is repeated for each speaker in the dataset.
 - Outcome: Through this augmentation, each speaker's original dataset is expanded by a factor of six (3,000), enhancing the diversity and volume of data available for model training.

Multilingual, multi-speaker TTS system

- Unified phoneme representation
 - We integrate 42 English, 47 Korean, and 50 Japanese phonemes into a unified set consisting of **102 phonemes**.
 - We follow the **International**

Table1: Unified phonemes table

CONSONANTS (PULMONIC)		Unified sympol	Original IPA symbol				
		Unified symbol	ko	jp	en		
Plosive	Bilabial	р	p ^h ㅍ (파랑)	p パ (パン)	p p (pack)		
	Bhablai	b	b ㅂ (바람)	b ば (ばしょ)	b b (back)		
	Alveolar	t	t ^h ⋿(⋿∤⊏∤)	t た (たべる)	t t (time)		
	Alveolai	d	d ⊏ (다수)	d ど (どうも)	d d (dog)		
	Velar	k	^{k^h} ㅋ (ヨ기)	k く (くる)	k k (kiss)		
	Venar	g	g ㄱ (가방)	g が (がっこう)	g g (gaggle)		
Nasal	Bilabial	m	m ㅁ (마을)	m ま (まあ)	m m (much)		
	Alveolar	n	n ㄴ (나무)	n な (なっとう)	n n (note)		
Fricative	Labiodental	f		∳ .ک، (.ک، <)	f f (fish)		
	Alveolar	S	s ㅅ (사랑)	s さ (さっそう)	s s (soup)		
	Triveolar	Z	t̪z ㅈ (자유)	z ざ (ざくろ)	z z (zip)		
	Alveolo-palatal & Postalveolar	sh		。 し (しき)	$\int \\ sh (ship)$		
	Glottal	h	h ㅎ (하늘)	h は (はな)			
Affricate	Postalveolar	ch		∮ ち(ちゃ)	f ch (chair)		
Trill & Approximant	Labiodental	r		「 ラ (ラーメン)	ı r (run)		

as a posterior encoder.

Figure2: Model diagram

Experiments

Compared models

- CM-TTS: cross-lingual, multi-speaker TTS model
- MM-TTS: VC-augmented multilingual, multi-speaker TTS model
- MM-TTS_{vae}: MM-TTS with posterior embeddings
- Objective evaluation
 - Intelligibility: WER(%), CER(%)
 - Acoustic similarity: F0_{rmse}(Hz), log spectral distance (LSD)(dB)

Phonetic Alphabet (IPA) [2] for merging phonemes from different languages and phonemes with similar pronunciations (e.g. 'm', 'n' in nasal sound) are combined. (details are provided in the Table1)

Subjective evaluation

• Naturalness: MOS

Model	English				Korean			Japanese				
	WER(%)	CER(%)) $FO_{rmse}(F$	H_Z) LSD(dB)	WER(%)	CER(%)	$F0_{rmse}(H$	(z) LSD(dB)	WER(%)	CER(%) $F0_{rmse}(F)$	Hz) LSD(dB)
CM-TTS	3.11	1.29	37.58	4.58	19.88	6.88	29.64	4.64	16.04	10.50	25.75	4.53
MM-TTS	16.74	10.28	37.73	4.22	27.76	11.74	26.41	4.42	21.24	14.01	24.72	4.27
$IM\text{-}TTS_{vae}$	4.87	2.34	36.57	4.15	15.13	4.36	26.28	4.59	14.45	9.51	24.24	4.36
Table2: Objective evaluation												
Model	First language : English				First language : Korean			First language : Japanese				
	English	1]	Korean	Japanese	Englis	h k	Korean	Japanese	Englis	h	Korean	Japanese
CM-TTS	$2.71 \pm 0.$	12 1.9	06 ± 0.11	2.16 ± 0.11	1.70 ± 0	.08 2.7	5 ± 0.10	1.75 ± 0.09	1.77 ± 0	.10 1.8	84 ± 0.10	2.93 ± 0.12
MM-TTS	2.93 ± 0.2	$.12 \mid 1.4$	7 ± 0.08	1.91 ± 0.11	1.52 ± 0	.08 2.1	5 ± 0.10	1.89 ± 0.09	1.96 ± 0	$.12 \mid 2.3$	31 ± 0.13	2.98 ± 0.12
AM-TTS _{vae}	$ 3.13\pm0$.12 2.1	5 ± 0.12	2.20 ± 0.12	$ig 2.13 \pm 0$	0.09 3.03	$3\pm0.10 2$	2.34 ± 0.11	$ig 2.30 \pm 0$	0.12 2.6	66 ± 0.12	3.15 ± 0.12
Recorded	$ 4.65 \pm 0.$.08	-	-	-	4.9	4 ± 0.03	-	-		-	4.73 ± 0.06
Table3: Subjective evaluation												

[1] R. Terashima et al., "Cross-speaker emotion transfer for low-resource text-to-speech using non-parallel voice conversion with pitch-shift data augmentation", Interspeech, 2022

[2] I. P. Association, "Handbook of the International Phonetic Association: A guide to the use of the International Phonetic Alphabet.", Cambridge University Press, 1999

[3] E. Song et al., "TTS-by-TTS 2: Data-selective augmentation for neural speech synthesis using ranking support vector machine with variational autoencoder", Interspeech, 2022

[4] H. Yoon et al., "Language model-based emotion prediction methods for emotional speech synthesis systems", Interspeech 2022

