BWSNet: Automatic Perceptual Assessment of Audio Signals

Clement Le Moine Veillon^{*1}, Victor Rosi^{*2}, Pablo Arias Sarah³, Léane Salais¹, Nicolas Obin¹

1 STMS Lab – IRCAM, CNRS, Sorbonne Université, Paris, France

2 Department of Speech Hearing and Phonetic Science, University College London, London, UK

3 School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK

Context

Centre

Pompidou

Revealing the perceptual representation of any sensory object usually requires conducting an experiment with human participants evaluating stimuli, based on a specific criterion. Recently, attention was given to **Best-Worst Scaling¹** (BWS) as a method to assess perceptual qualities of sounds^{2,3}. In this paper, we introduce **BWSNet**, a model for automatic perceptual assessment based on BWS data in a **metric learning** task.

From BWS trial <i>t^a</i>	To distances	Metric learning losses and optimisations
« Which samples are perceived as most and	h ^x : BWS embedding	• Relative Contrastive loss with dynamic margins $\mathcal{L}_{drc}^{t^a}$
<u>least</u> A? » Derived ordinal relations ⁴	Inequality (1)	$\mathcal{L}_{drc}^{t^{a}} = \frac{1}{n_{v}^{t^{a}}} \sum_{i=1}^{N-2} \max\left(\left\ \mathbf{h}_{b}^{t^{a}} - \mathbf{h}_{i}^{t^{a}}\right\ - \left\ \mathbf{h}_{b}^{t^{a}} - \mathbf{h}_{v}^{t^{a}}\right\ + \alpha_{b,n_{i}}, 0\right) + $
BEST WORST		$1 \sum_{i=1}^{N-2} (_{x_i} t^a - t^a_i + t^a - t^a_i _{x_i} t^a)$

67.7 ± 4.5 • Warm **1**0.8 A-l-d-fr BWS scores⁴: 2.5 0.0 2.5 10.0 12.5 5.0 2D_x ed relations constraint $(\mathcal{L}_{frc}^{t^{a}})$ **FR***: Fulfilled relations | **A-fixed**: fixed-margin configuration | **A-l**: no margin constraint | **A-l-d**: margin constraint (\mathcal{L}_{dmc}) | • 0 Conclusion Refere ο ο ¹Louviere, J. worst scaling: Theory, methods and BWSNet, a novel method designed for automated audio perceptual assessment applications. based on human judgements. in speech signals (Doctoral dissertation, ² Le Moine, C. Perceptual organisation of latent spaces for vocal attitudes and timbral attributes. sorbonne univ Perspectives of enhanced analyses of perceptual data by leveraging the dimensions ³Rosi, V., Aria *•*. (2023). Shared mental representations of the latent space. *13*(1), 5180. underlie meta Possible applications for conditioning synthesis/conversion models of speech and ⁴Hollis, G., & ' 'A comparison of best-worst scaling, antic norms. Behavior research numeric estin musical data. methods, 50, 2D_X 1000 **UNIVERSITY** ircam **CNrS** MINISTÈRE DE LA CULTURE

of

GLASGOW

ICASSP

2024 KOREA