

TOWARDS MULTI-DOMAIN FACE LANDMARK DETECTION WITH SYNTHETIC DATA FROM DIFFUSION MODEL

Brand Engagement Network

Background

- Facial Landmark Detection: Identifies key facial points. Critical for 3D reconstruction, recognition, AR/VR.
- Challenge: Extending accuracy to art, cartoons, caricatures. Limited by scarce diverse data.

Yuanming Li, Gwantae Kim, Jeong-gi Kwak, Bon-hwa Ku, Hanseok Ko* School of Electrical Engineering, Korea University

Contributions

- We enhance multi-domain face landmark detection using synthetic data from a diffusion model.
- A two-stage training method for synthetic dataset generation : initially leveraging a large real-face dataset with ControlNet, then fine-tuning on a smaller, diverse domain dataset.
- Traditional Methods Limitations: Rely on warping, style translation. Struggle with significant domain gaps.
- We generate a multi-domain face landmark dataset across 25 styles, comprising 400 annotated images per style.

Method

Stage 1: Initial Training

- Utilized a large dataset of real-face and landmark pairs.
- Trained ControlNet to generate face images conditioned on facial landmarks.

Stage 2: Domain Adaptation

- Fine-tuned ControlNet using a small, diverse domain face dataset.
- Adjusted facial landmarks and styles through text prompts.

Synthetic Dataset Generation

- Edited random landmark attributes to create a variety of styles.
- Generated 400 images for each of 25 styles, resulting in a 10,000-image dataset.

Fine-tuning Landmark Detector

Results and Discussion

- Employed the synthetic dataset to fine-tune a pre-trained face landmark detector.
- Enhanced model's performance on the ArtFace and Caricature datasets.

Experimental Setup

- Implemented based on the Stable Diffusion model with a 1.4 billion parameter T2I model.
- Training was done on the FFHQ dataset for 200k steps and on a small multi-domain dataset for 100k steps.
- Utilized DDIM sampler with classifier-free guidance for landmark-guided face generation.
- The entire training process was efficient, requiring only a single NVIDIA RTX Titan GPU and was completed within a day, highlighting

Synthesis images

• Displays various generated images demonstrating the model's capability to accurately align with edited facial landmarks across different styles, from single-attribute changes to complex, multi-attribute transformations.

Qualitative comparision

• Offers a qualitative comparison between the proposed method and existing techniques, showing superior alignment and detail capture in generated facial landmarks.

the model's practical applicability for quick deployment and testing.

• Evaluated using NME for landmark accuracy, FR for error instances, and AUC for overall performance.

Quantitative comparison

Table 1. Quantitative comparison with evaluated baselines.							
		ArtFace			CariFace		
Metric	NME	$FR_{10\%}$	$AUC_{10\%}$	NME	$FR_{10\%}$	$AUC_{10\%}$	
Ours	4.64	2.26	0.5548	5.54	6.29	0.4838	
foa	4.69	3.75	0.5388	8.26	22.31	0.2997	
ArtFace	6.50	10.62	0.4573	12.04	44.41	0.1476	
CariFace	-	-	-	4.54	0.71	0.5477	
STAR	6.20	13.21	0.5142	7.16	13.73	0.3875	

Ablation study for image synthesis

• Illustrates the results of an ablation study, evidencing the effectiveness of the two-stage training approach in maintaining alignment between generated images and input landmarks, even with exaggerated modifications.

Conclusions

- Introduced a novel two-stage approach for generating synthetic, multi-domain facial landmark data.
- The approach effectively handles exaggerated landmarks and diverse styles, validated by improved accuracy in multi-domain landmark detection.