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Algorithmic Results

Introduction

1. Sparse least-squares problems: 1. Least Angle Regression for the sGMC model:

The minimum #¢s-norm sGMC solution path w, () can be computed by

L 1 2
minimize J(x) = 5 |y — Az|; + AV (x). (1) an extension of the well-known least angle regression (LARS [4]) algorithm:

TeR™

(1) In each iteration, the proposed LARS-sGMC algorithm computes

y € R™: measurement A € R™*": sensing matrix W: sparse regularizer
(£, s) corresponding to one linear piece of w, ().

2. Conventional convex/nonconvex sparse regularizers:

(1) ¢ (LASSO [1]) © biased ® (2) Let (&, sk) corresponds to the kth linear piece, then:
1-norm . convex lase

» The LARS-sGMC iteration computes the lower breakpoint

(2) the minimax concave (MC [2]) penalty: less biased © nonconvex & A(E, s1) of the current linear piece by solving (NQ).

» We conduct certain deletion and insertion operations on indices
in &, to obtain £..1, and change the components of s; in re-

3. The generalized minimax concave (GMC [3]) penalty:

W(x) _ Ixll. _ min (||Z||1 +1||B(x _ z)||§) sponse to the change of &, to yield sp41.
B T zeR™ ‘N
See Algorithm 1 in the extended version of this paper [5| for details.
__ _ 2. Properties of LARS-sGMC:
(1) We prove the correctness and finite termination of LARS-sGMC un-
I L NN\ der a mild assumption.
GMC penalty [{-norm debiasing function

(1) Overall convexity condition: if B € RP*" satisfies A'A > AB'B,
then J(-) in (1) is convex despite nonconvexity of the GMC penalty.

(2) We study the scaled GMC (sGMC) model: B := \/gA with p € [0,1).

4. Key contributions: we prove that the minimum #¢5-norm solution
path of the sGMC model is piecewise linear with respect to A, and can be
computed by an iterative algorithm within finite steps.

T heoretical Results

1. Optimality condition of the sGMC model:

x € R" is a solution of the sGMC model if and only if there exists z € R",
such that w = [:cT zT]T satisfies

0eC (DCw-b)+ (| ],)(w). (2)

where C = blkdiag(A, A), b=[y" 0], D == (1__ppI)I %'

We call w € R2" an extended solution if it satisfies (2). In this paper, we
focus on the minimum /5-norm extended solution w, (\).

2. Properties of the minimum /5-norm extended solution:

Wgq(€o, S0, 4) = 0y
(€0,50) = (0,02,)

——

/l(gu; So)

i/ Ae R,

A(Exs1s Sk+1) A 81)  A(Ex, 5¢) A(Ex—1)Sk-1)
: >

supp(w*(/l)) = &, sign(w*(}t)) =5,

(1) w,(\) is piecewise linear in A\ with finite (< 3°™) linear pieces.

(2) Within every linear piece of w,(\), there exist uniquely a combina-
tion of £ c{1,2,...,2n} and s € {-1,0, l}zn such that:

» supp(wy (X)) =&, sign(w,(\)) = s are constant.

» w,(A) =wgqg(€,s, ), the latter is the least-squares solution of

((WEE)
\(\V/.] S —|g) W, = O,

c; (b- DCw) = \s;, (EQ-a)
(EQ-b)

(3) The duration of A for a linear piece is the set of A > 0 satisfying

(Vie&)
(Vje-E) |ej (b- DCw)| < A,

(NQ-a)
(NQ-b)

S; W; 2 0.

(2) The complexity of the kth iteration is O (m El” + \Ek\g).

(3) If we set p =0 in the sGMC model, then LARS-sGMC reduces to the
conventional LARS [4] algorithm for LASSO.

Experiments

We demonstrate the correctness, efficiency and practical utility for reg-

ularization parameter tuning of the LARS-sGMC algorithm.
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(b) Efficiency. (c) Practical utility.
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