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Introduction
1. Sparse least-squares problems:

minimize
x∈Rn

J(x) ∶= 1
2
∥y −Ax∥22 + λΨ(x). (1)

y ∈ Rm: measurement A ∈ Rm×n: sensing matrix Ψ: sparse regularizer
2. Conventional convex/nonconvex sparse regularizers:

(1) ℓ1-norm (LASSO [1]): convex biased

(2) the minimax concave (MC [2]) penalty: less biased nonconvex

3. The generalized minimax concave (GMC [3]) penalty:

(1) Overall convexity condition: if B ∈ Rp×n satisfies A⊺A ⪰ λB⊺B,
then J(⋅) in (1) is convex despite nonconvexity of the GMC penalty.

(2) We study the scaled GMC (sGMC) model: B ∶=
√

ρ
λ

A with ρ ∈ [0, 1).

4. Key contributions: we prove that the minimum ℓ2-norm solution
path of the sGMC model is piecewise linear with respect to λ, and can be
computed by an iterative algorithm within finite steps.

Theoretical Results
1. Optimality condition of the sGMC model:

x ∈ Rn is a solution of the sGMC model if and only if there exists z ∈ Rn,
such that w ∶= [x⊺ z⊺]⊺ satisfies

0 ∈ CT (DCw − b) + λ∂(∥⋅∥1)(w), (2)

where C ∶= blkdiag(A, A), b ∶= [y⊺ 0⊺]⊺, D ∶= [(1 − ρ)I ρI
−ρI ρI

].

We call w ∈ R2n an extended solution if it satisfies (2). In this paper, we
focus on the minimum ℓ2-norm extended solution w⋆(λ).
2. Properties of the minimum ℓ2-norm extended solution:

(1) w⋆(λ) is piecewise linear in λ with finite (≤ 32n) linear pieces.

(2) Within every linear piece of w⋆(λ), there exist uniquely a combina-
tion of E ⊂ {1, 2, . . . , 2n} and s ∈ {−1, 0, 1}2n such that:

▸ supp(w⋆(λ)) ≡ E , sign(w⋆(λ)) ≡ s are constant.
▸ w⋆(λ) ≡ ŵEQ(E , s, λ), the latter is the least-squares solution of

⎧⎪⎪⎨⎪⎪⎩

(∀i ∈ E) cT
i (b −DCw) = λ si,

(∀j ∈ ¬E) wj = 0,

(EQ-a)
(EQ-b)

(3) The duration of λ for a linear piece is the set of λ > 0 satisfying

⎧⎪⎪⎨⎪⎪⎩

(∀i ∈ E) si wi ≥ 0.

(∀j ∈ ¬E) ∣cT
j (b −DCw)∣ ≤ λ,

(NQ-a)
(NQ-b)

Algorithmic Results
1. Least Angle Regression for the sGMC model:

The minimum ℓ2-norm sGMC solution path w⋆(λ) can be computed by
an extension of the well-known least angle regression (LARS [4]) algorithm:

(1) In each iteration, the proposed LARS-sGMC algorithm computes
(E , s) corresponding to one linear piece of w⋆(λ).

(2) Let (Ek, sk) corresponds to the kth linear piece, then:

▸ The LARS-sGMC iteration computes the lower breakpoint
λ(Ek, sk) of the current linear piece by solving (NQ).

▸ We conduct certain deletion and insertion operations on indices
in Ek to obtain Ek+1, and change the components of sk in re-
sponse to the change of Ek to yield sk+1.

See Algorithm 1 in the extended version of this paper [5] for details.
2. Properties of LARS-sGMC:

(1) We prove the correctness and finite termination of LARS-sGMC un-
der a mild assumption.

(2) The complexity of the kth iteration is O (m ∣Ek ∣2 + ∣Ek ∣3).

(3) If we set ρ = 0 in the sGMC model, then LARS-sGMC reduces to the
conventional LARS [4] algorithm for LASSO.

Experiments
We demonstrate the correctness, efficiency and practical utility for reg-

ularization parameter tuning of the LARS-sGMC algorithm.

(a) Correctness.

(b) Efficiency. (c) Practical utility.
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