PRE-ECHO REDUCTION IN TRANSFORM AUDIO CODING VIA **TEMPORAL ENVELOPE CONTROL WITH MACHINE LEARNING BASED ESTIMATION**

Jae-Won Kim¹, Byeongho Jo², Seungkwon Beack² and Hochong Park¹

¹Kwangwoon University, Seoul, Korea

²Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea

Introduction

- New pre-echo reduction method via temporal envelope control with machine learning based estimation
- Novelty of proposed method
 - Direct modification of waveform based on temporal envelope before encoding and after decoding
 - Machine learning based estimation of temporal envelope from side information
 - New coding tool for pre-echo reduction for legacy transform codecs

Proposed method : Continuity

Temporal envelope computation for frame continuity

< Conventional window switching >

< Proposed method >

Performance

Equivalent sound quality to short-window transform using fewer bits in transient frames

Proposed method : Two operating modes

Sub-frame-based temporal envelope control

Two operating modes TE-flattening (TE-F) mode Good pre-echo reduction performance for most transient signals TE-correction (TE-C) mode Effective for some on-set speech signals

< Example of continuity enforcement for TE-F >

Proposed method : Overall operation

Performance evaluation

Database

Train/validation data : transient signals extracted from Beethoven sonata, VCTK dataset, RWC music database (total 2.5 hours)

< TE-flattening mode >

< TE-correction mode >

< Two operating modes in the proposed pre-echo reduction method >

- Test data : 10 audio clips with frequent transient frames (60 sec)
- Core codec : MPEG-H 3D Audio Frequency-Domain mode (3DA-FD)
 - Use transient frames determined by window selection module in the 3DA-FD
- Manually selected operating mode for each transient frame
- Comparison with various pre-echo reduction methods
 - 3DA-FD using long window (Base-L) and short window (Base-S)

Comparison of average bit rate in transient frames for each method

Method	Base-L	Base-S	TNS	Proposed
Bit rate (kbps)	47.48	49.48	48.03	47.70

- Subjective performance evaluation by MUSHRA
 - Equivalent performance to Base-S using fewer bits
 - Significantly better performance than Base-L using a similar number of bits

Proposed method : Envelope prediction

- Temporal envelope estimation using TE parameters and neural network
- 4 TE parameters
 - Max region index k_{max} (3 bits) and max region level L_{max} (3 bits)
 - Level ratio L_1/L_{max} , L_2/L_{max} (5 bits each)

Conclusion

- The proposed method reduces the pre-echo in transform coding by controlling temporal envelope before encoding and after decoding.
- The proposed method using fewer bits yields equivalent sound quality to the short-window transform for mono coding.