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ABSTRACT

Face super-resolution (FSR) is a powerful technique for
restoring high-resolution face images from the captured low-
resolution ones with the assistance of prior information. Ex-
isting FSR methods based on explicit or implicit covariance
matrices are difficult to reveal complex nonlinear relation-
ships between features, as conventional covariance compu-
tation is essentially a linear operation process. Besides, the
limited number of training samples and noise disturbance
lead to the deviation of sample covariance matrices. To solve
these issues, we propose a novel FSR method via using spec-
tral canonical F-correlation representation. The proposed
method first defines intra-resolution and inter-resolution co-
variation matrices by considering the nonlinear relationship
between different features, and then uses the fractional order
idea to rebuild covariation matrices. The qualitative and quan-
titative results have validated the superiority of the proposed
method.

Index Terms— face super-resolution, canonical correla-
tion analysis, fractional order, nonlinear feature relationship

1. INTRODUCTION

Face super-resolution (FSR) can be seen as a domain-specific
image super-resolution (SR) problem, which infers the high-
resolution (HR) face images from the low-resolution (LR)
ones via considering unique priors on the face. It has been
widely used in various face analysis-related applications,
such as face detection [1], face recognition [2], face re-
identification [3], and so on. Because of the highly under-
determined constraints and possible data noise, FSR is a
seriously ill-posed problem, thus making it much challeng-
ing. In recent years, learning-based FSR has achieved great
progress, which tries to take advantage of machine learning
technologies to learn the complicated relationship between
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Science Foundation of Jiangsu Province of China under grant BK20190440.

HR and LR face data via given training set. In this work, we
focus on this type of FSR techniques.

Thus far, there have been a lots of useful learning-based
FSR techniques to be developed; see, for instance, [4, 5, 6, 7].
Among these FSR methods, an attractive research direction is
to explore and exploit the intrinsic association information of
LR and HR face images during super-resolution process. Un-
doubtedly, canonical correlation analysis (CCA) [8], a well-
known statistical tool for measuring the linear correlation be-
tween two sets of variables, is one of the most appropriate
tools for modeling the correlation between LR and HR faces.
So far, many CCA-related methods have been applied to FSR
tasks. For instance, in 2010, Huang et al. [9] pioneered the ap-
plication of CCA to FSR and proposed a coherent local linear
reconstruction SR (CLLR-SR) method, where the correlation
between LR and HR images is maximized. Later, An et al.
[10] proposed a 2D CCA-based FSR method directly based
on 2D face images rather than face vectors.

However, the preceding CCA-related FSR methods are
based on covariance matrices in nature, which only model the
linear relation between different features. Moreover, these
methods must face the singularity of within-set covariance
matrices when the facial feature dimension is larger than the
number of training faces. In this paper, we attempt to bor-
row the idea from our previous work [11] to overcome these
two intractable problems in FSR. On the other hand, in real-
istic scenario, it is well-known that intra- and inter-set sample
covariation matrices in [11] might deviate from the true ones
due to the noise and limited number of LR/HR training face
images. Existing studies [12, 13] in the filed of feature extrac-
tion and reduction have shown that spectral reconstruction can
improve the problem of this deviation, obtaining encouraging
learning performance.

Based on the above-mentioned considerations, in this
paper, we propose a novel spectral canonical F-correlation
representation method for face hallucination, dubbed SCFR-
FSR, where the spectra of the sample covariation matrix are
reconstructed via using fractional order strategy. Our pro-
posed method can not only model the nonlinear relationship
between LR and HR facial features, but also alleviates the
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deviation problem of sample covariation matrices. Experi-
mental results show that our proposed SCFR-FSR method is
more encouraging than existing methods.

2. PROPOSED METHOD

2.1. Formulation

Assume that LR and HR training face images are L =
[l1, l2, · · · , ln] ∈ Rp×n and H = [h1, h2, · · · , hn] ∈ Rq×n,
where n is the number of training images, p and q sepa-
rately denote the dimension of LR and HR image vectors. To
reduce the data noise and computational burden, we use prin-
cipal component analysis (PCA) to extract the useful features
after centralizing every HR/LR face image:

H̃ = PT
h

(
H − µh1

T
)
∈ Rdh×n,

L̃ = PT
l

(
L− µl1

T
)
∈ Rdl×n,

(1)

where µh ∈ Rq and µl ∈ Rp denote the average HR and
LR faces, respectively, 1 ∈ Rn is the vector of all ones,
Ph ∈ Rq×dh and Pl ∈ Rp×dl are separately the PCA trans-
formations, dh ≤ min(q, n) and dl ≤ min(p, n).

Rewriting H̃ and L̃ in the form of feature vectors, we are
able to obtain the corresponding HR and LR facial feature
matrices, i.e.,

H̃ = [f1h , f
2
h , ..., f

dh

h ]T ,

L̃ = [f1l , f
2
l , ..., f

dl

l ]T ,

where f taa ∈ Rn with a ∈ {h, l} and ta = 1, 2, · · · , da.
Assume that there is a nonlinear mapping ψ(·), which maps
each feature vector f taa to a new space via

ψ(f taa ) =
[
ψ1(f taa ), ψ2(f taa ), · · · , ψN (f taa )

]T
(2)

where N is the dimension of ψ-generated new space. In this
paper, ψ(·) is chosen as a kernel mapping associated with ker-
nel function ker(·, ·). We make use of (2) to define F-intra-
resolution and F-inter-resolution covariation matrices as:

Kab(ta, tb) = ψ(f taa )Tψ(f tbb ) = ker(f taa , f
tb
b ), (3)

where Kab(ta, tb) is the (ta, tb)-th element of matrix Kab,
b ∈ {h, l}, tb = 1, 2, · · · , db.

Via using (3), our SCFR-FSR method aims to seek pairs
of projection directions Wh ∈ Rdh×d and Wl ∈ Rdl×d (d ≤
min(dh, dl)) of HR and LR facial features by the following
optimization problem:

max
Wh,Wl

Tr(WT
h K

β
hlWl)

s.t. WT
h K

αh

hhWh = I, WT
l K

αl

ll Wl = I,
(4)

where Tr(·) denotes the trace of a matrix, I ∈ Rd×d is the
identity matrix, αh, αl, and β are the fractions, respectively,
Kβ

hl is computed by

Kβ
hl = UΣβV T , Σβ = diag(σβ

1 , σ
β
2 , · · · , σβ

r ) (5)

with 0 ≤ β ≤ 1, U and V are separately the left and right
singular vector matrices of Khl, σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are
the descending nonzero singular values, r = rank(Khl), and
Kαa

aa (a ∈ {h, l}) is calculated by

Kαa
aa = QaΓ

αa
a QT

a , Γαa
a = diag(γαa

a,1, γ
αa
a,2, · · · , γαa

a,ra) (6)

with 0 ≤ αa ≤ 1, Qa is the eigenvector matrix of Kaa,
γa,1 ≥ γa,2 ≥ · · · ≥ γa,ra > 0 are the descending nonzero
eigenvalues, and ra = rank(Kaa).

2.2. Optimization

For optimization problem (4), we solve it via the spectral de-
composition method. Concretely, the first pair of projection
directions, wh and wl, can be computed by:

max
wh,wl

wT
hK

β
hlwl

s.t. wT
hK

αh

hhwh = 1, wT
l K

αl

ll wl = 1.
(7)

The optimization problem (7) can be solved by the La-
grange multiplier technique, i.e.,

L(wh, wl, φh, φl) = wT
hK

β
hlwl −

φh

2
(wT

hK
αh

hhwh − 1)

− φl

2
(wT

l K
αl

ll wl − 1)
(8)

with φh and φl as Lagrange multipliers. Let ∂L/∂wh = 0
and ∂L/∂wl = 0. Then, we get

(Kαh

hh )
−1Kβ

hl(K
αl

ll )
−1Kβ

lhwh = φwh,

(Kαl

ll )
−1Kβ

lh(K
αh

hh )
−1Kβ

hlwl = φwl,
(9)

where Kβ
lh = (Kβ

hl)
T and φ (= φ2

h = φ2
l ) is the eigenvalue

corresponding to the eigenvector wh (or wl). We are able to
choose the first d pairs of eigenvectors {(wi

h, w
i
l)}di=1 of (9)

to generate the projection matrices

Wh = [w1
h, w

2
h, · · · , wd

h],

Wl = [w1
l , w

2
l , · · · , wd

l ].

2.3. Hallucinating Face

After obtaining Wh and Wl, we are able to calculate the cor-
relation representations of PCA-transformed HR and LR fea-
tures by the form of

Hlatent =WT
h H̃ =

[
h1latent, h

2
latent, · · · , hnlatent

]
,

Llatent =WT
l L̃ =

[
l1latent, l

2
latent, · · · , lnlatent

]
.

Given a new LR face l ∈ Rp, its correlation feature can be
obtained by

llatent = (PlWl)
T (l − µl) (10)

In Llatent, we select k nearest neighbors of llatent to recon-
struct it, assuming the index set of the k nearest neighbors is
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idk. Let Lk
latent = {lklatent}k∈idk

. Then, llatent can be recon-
structed by the following optimization problem:

min
η

∥∥llatent − Lk
latentη

∥∥
2

s.t. 1T η = 1, (11)

where ∥·∥2 denotes the 2-norm of a vector, η ∈ Rk, and
1 ∈ Rk is an all-ones vector. It is easy to find the optimal η
of optimization problem (11). Let Hk

latent = {hklatent}k∈idk
.

Then, the corresponding HR correlation feature of l can be
found by the form of

hlatent = Hk
latentη. (12)

Using (12), we are able to obtain an initial HR face of l by the
following

initialh = Ph(WhW
T
h )†Whhlatent + µh, (13)

where † is the pseudo-inverse.
It should be noted that the reconstructed initialh usually

lacks facial detail information. Next, we introduce residual
learning to refine the HR version in (13). To be specific,
we first super-resolve each LR face of training set L using
(13), obtaining the corresponding HR face image set InitialH .
Then, we separately compute HR and LR residual training
face images by

ResidualH = H − InitialH ,

ResidualL = L− InitialH ↓,
(14)

where ↓ denotes a downsampling operation. In addition, we
follow the patch idea [9] and divide all HR and LR residual
training images into overlapping patches. Note that, we en-
large the size of LR residual faces to that of HR residual im-
ages before image partition. For HR and LR residual patches
with the same position, we employ (4) to learn their correla-
tion representations.

For a new LR face l, we first employ (13) to reconstruct
the corresponding initial HR face initialh, and then compute
its LR residual face by

residuall = l − initialh ↓ . (15)

Likewise, we follow the preceding partition process to obtain
the residual patches of l and use the above reconstruction pro-
cess to generate the corresponding HR residual patches. Let
residualh denote the resulting HR residual face image with
the average pixel values in overlapping regions. Together with
initialh, we are able to obtain the final super-resolution face
image hsr of l by

hsr = initialh + residualh. (16)

3. EXPERIMENTS

To verify the effectiveness of our SCFR-FSR method, we
compare the proposed SCFR-FSR with methods CLLR-SR

[9], partial least squares (PLS) [14], thresholding locality-
constrained representation (TLcR) [15], VCRL-ANE [16],
VDSR [17], and ReDegNet [18] on the CAS-PEAL-R1 face
database. In addition, we also make use of the Bicubic inter-
polation algorithm as a comparison baseline. Two metrics,
i.e., peak signal-to-noise ratio (PSNR) and structural similar-
ity (SSIM), are utilized to evaluate the performance of FSR.
Note that, the higher the values of PSNR and SSIM are, the
better the performance is.

3.1. Data Preparation

The CAS-PEAL-R1 database includes 30863 images of 1040
individuals with different variations such as expression, light-
ing, background, and so on. In our experiments, we select
1040 frontal face images for the performance test. We ran-
domly select 1000 images from 1040 faces for training and
the remaining 40 images for testing. The size of HR face im-
ages is 96× 96 pixels. The LR face images are generated by
downsampling the corresponding HR faces with two differ-
ent factors of 2 and 4. As a result, the size of LR faces is,
respectively, 48× 48 pixels and 24× 24 pixels.

3.2. Parameter Setting

Our proposed SCFR-FSR method has three fractional order
parameters, i.e., αh, αl, and β, which are separately selected
from {0.1, 0.2, · · · , 1}. We choose kernel mapping ψ(·) as
the Gaussian kernel mapping. Hence, the corresponding ker-
nel function is

ker(f taa , f
tb
b ) = exp

Ä
−
∥∥f taa − f tbb

∥∥2 /(2σ2)
ä

where σ denotes the width parameter set to 0.1. In addition,
we empirically set different neighborhood parameters under
distinct downsampling factors.

3.3. Comparison of FSR Results

The quantitative FSR results of each method are summarized
in Table 1. Taking two test face images as an example, Fig. 1
shows the visual results of each method under different down-
sampling factors. As can be seen from Table 1, our SCFR-
FSR method achieves the best quantitative results with differ-
ent factors among all the methods, whether the used metric is
PSNR or SSIM. The TLcR method performs the second best
and comparably to our proposed method. The ReDegNet and
Bicubic methods perform worse than other methods. From
Fig. 1, it can be seen that our proposed method achieves bet-
ter visual results, particularly in the 4× case. The Bicubic
method achieves the worst visual result among all the meth-
ods in the case of 4×. These results suggest that our proposed
SCFR-FSR method is effective and promising for FSR.
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Table 1. Average PSNR and SSIM values of different methods with magnification factors 2 and 4 on the CAS-PEAL-R1
database.

Factor Metric CLLR-SR PLS TLcR VCRL-ANE VDSR ReDegNet Bicubic Ours

2× PSNR 33.06 33.30 35.67 33.61 34.09 31.63 32.25 38.11
SSIM 0.9550 0.9503 0.9665 0.9592 0.9650 0.9414 0.9503 0.9680

4× PSNR 28.40 29.45 30.92 28.59 29.46 26.91 26.90 33.15
SSIM 0.8928 0.8977 0.9112 0.8827 0.8875 0.8633 0.8454 0.9198

Fig. 1. Visual comparison of face super-resolution results of different methods on the CAS-PEAL-R1 database.

Fig. 2. Visual results of our SCFR-FSR method. (a) LR face
images, (b) reconstructed initial HR face images, (c) final SR
face images, and (d) original HR face images.

3.4. Further Analysis

We further analyze the performance of the proposed SCFR-
FSR using five face images. Fig. 2 shows the reconstructed
initial HR face images and final super-resolution face images.
As we can see, residual learning strategy improves the facial
details of reconstructed initial HR face images and makes the
final super-resolution face images closer to original HR faces.
This means that it is necessary to introduce residual learning
in FSR.

4. CONCLUSION

In this paper, we have proposed a novel SCFR-FSR method
for super-resolving face images, where the spectra of sample
covariation matrices are reconstructed via using fractional or-
der strategy. Our proposed SCFR-FSR method can not only
model the nonlinear relationship between HR and LR facial
features, but also alleviates the deviation problem of sample
covariation matrices. Experimental results show that the pro-
posed SCFR-FSR method performs better, in contrast with
existing methods.
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