MP1.PC.1

Reading Is Believing: Revisiting Language Bottleneck Models for Image Classification Honori Udo*, <u>Takafumi Koshinaka</u> (Yokohama City University)

* Honori Udo is now with NTT Comware Corporation

Background

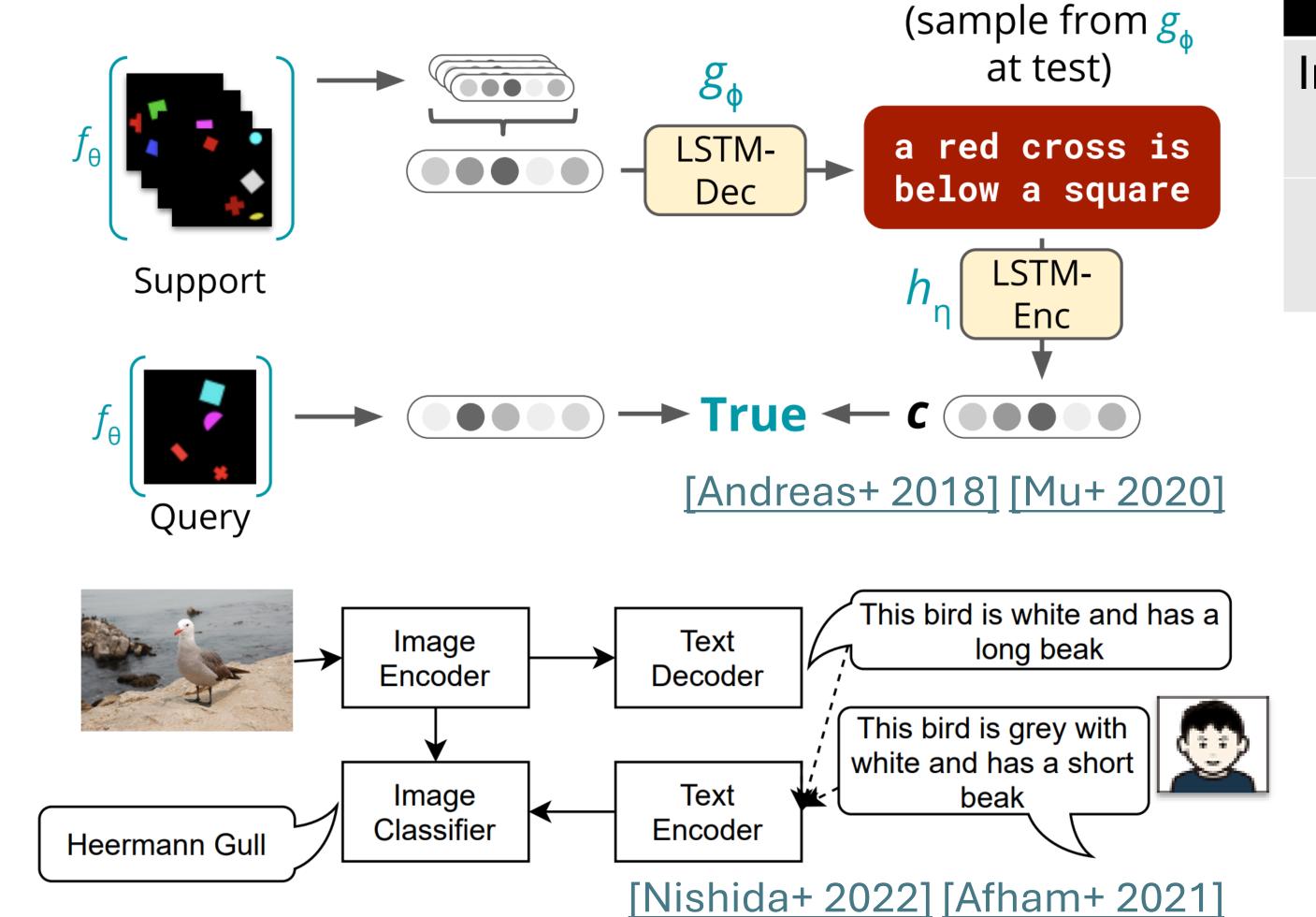
- The black-box nature of deep learning models often hinders the practical application of those models
- Using a set of human-readable features is a promising approach to eXplainable AI (XAI), e.g., concept bottleneck models [Koh+ 2020]

Language Bottleneck (LB) Models

Experimental Setup

- Dataset: CrisisNLP [Alam+ 2021]
 - Natural disaster images shared on social media
 - "Disaster Types" is a classification task with 7 classes: earthquake, fire, flood, hurricane, etc.

- Have been studied in <u>few-shot</u> scenarios
- Linguistic knowledge within image captioning models helps understand abstract concepts as well as recognize unseen image classes



Classifiers		Image captioners	Specs
	ResNet-50/101	InceptionV3+RNN	TF tutorial
	ViT-Base/Large	BLIP	ViT-L
Text-based	BERT _{BASE}	BLIP-2	ViT-g + OPT-2.7B
		CLIP Interrogator	BLIP + CLIP

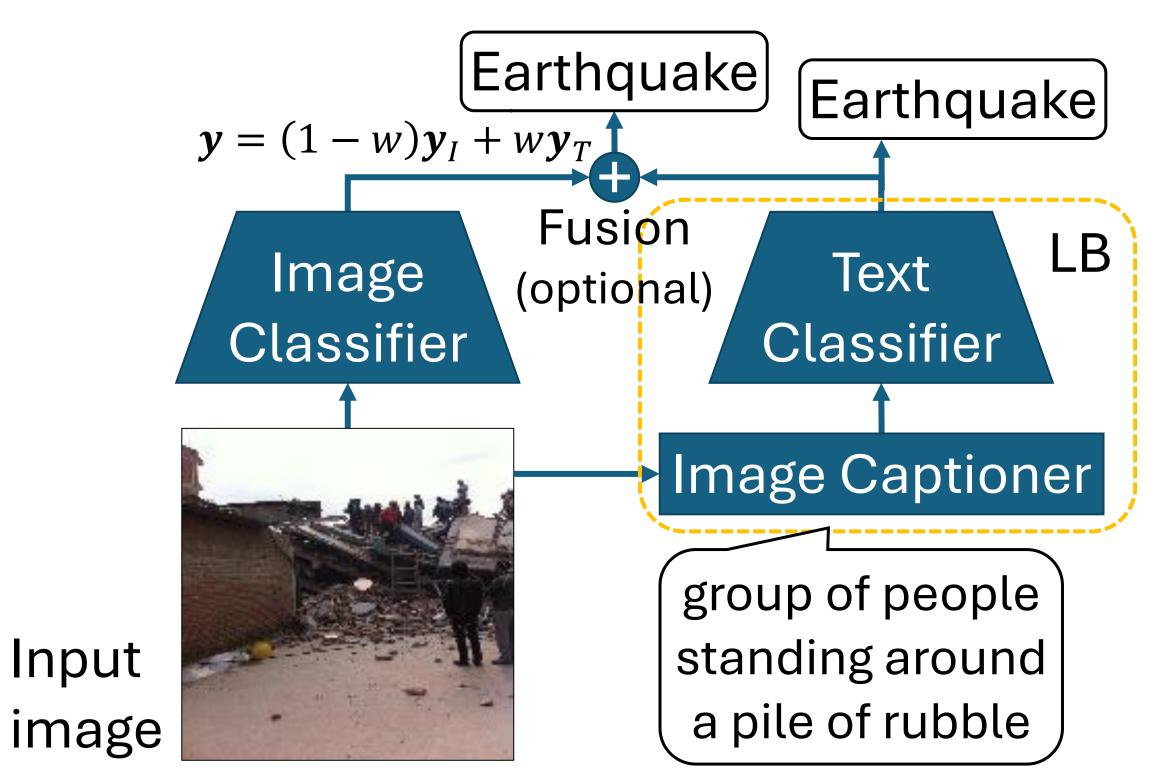
Experimental Result

Performance of image/text single-modal models

Model%accResNet-5078.38ResNet-10179.71ViT-Base84.22 T		Example input Image (hurricane)	
ViT-Large	82.01	ViT-Base	→ not disaster
IV3+RNN	42.38	IV3+RNN	a snowboard near another wave in the water \rightarrow flood
BLIP	70.55	BLIP	an oil rig in the middle of the
BLIP-2	78.11		ocean on a foggy day → not disaster
CLIP-I	85.09 🝸	BLIP-2	a large wave is crashing over
			the ocean → hurricane
Fusion of image/text		CLIP-I	a large body of water with a
modalities 87.1			boat in the distance, stormy seas, stormy sea, rough seas,
85		85.1	tumultuous sea, rough sea, violent stormy waters, storm
80			at sea, rough water,
75			apocalyptic tumultuous sea,
70 VIT-base + CLIP-I VIT-base + BLIP-2			a violent storm at sea, towering waves, sea storm, in rough seas with large waves,
			rough seas in background, stormy wheater \rightarrow hurricane

Objectives

- However, in more fundamental <u>many-shot</u> settings, LB models generally perform worse than standard (black-box) CV models
 - Because of information loss incurred in the step of converting images into language
- Recent foundation models for image captioning, on the other hand, are capable of describing images with great accuracy and detail



We (1) evaluate LB with modern image captioning models in a many-shot setting and (2) try fusing them with standard CV models

Fusion weight

Summary

- Modern captioning models can be powerful and explainable feature extractors for image classification
- A captioning model and a standard CV model see images differently so that fusing the two achieves even better performance
- We plan to verify our finding with more diverse datasets from different domains

Takafumi Koshinaka Laboratory School of Data Science, Yokohama City University 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan

% Accuracy

