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Background Experimental Setup

€ The black-box nature of deep learning models & Dataset: CrisisNLP [Alam+ 2021]
often hinders the practical application of those & Natural disaster images shared on social media
m?dels | & “Disaster Types”is a classification task with 7
@ Using a set of human-readable features is a classes: earthquake, fire, flood, hurricane, etc.

promising approach to eXplainable Al (XAl),
e.g., concept bottleneck models [Koh+ 2020]
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€ Have been studied in few-shot scenarios Test 3,213
@ Linguistic knowledge within image captioning
models helps gnderstandoabstract concepts as @ Models
well as recognize unseen image classes - .
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& Performance of image/text single-modal models

[Andreas+ 2018] [Mu+ 2020]
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Example input

This bird is white and has a ResNet-50 7/8.38 Image (hurricane) T e
Image ) Text long beak ' 5
Encoder Decoder |/ ResNet-101 79.71 4 o
!(This bird is grey with : _
Y ¢ | white and has a short ViT-Base 84.292
Cllmagf_e : _ Texdt e 1 beak ) . =l \/iT-Base |— notdisaster
assliier ncodaer -
[ Fieermann Gul y . N Vil-Large 82.01 IV3+RNN |a snowboard near another
[Nishida+ 2022] [Atham+ 2021] IV3+RNN 42 38 wave in the water — flood
ObjeCtiveS BLIP 70.55 BLIP an oil rig in the middle of the
ocean on a foggy day
& However, in more fundamental many-shot BLIP-2 78.11 - not disaster
settings, LB models generally perform worse than CLIP-I 85.09 —, |BLIP-2  lalarge wave is crashing over
standard (black-box) CV models the ocean — hurricane
& Because of information loss incurred in the & Fusion of image/text |CLIP-I a large body of water with a
step of converting images into language modalities  —— boat in the distance, stormy

90

S @.1 seas, stormy sea, rough seas,
tumultuous sea, rough sea,
violent stormy waters, storm
at sea, rough water,
apocalyptic tumultuous sea,
a violent storm at sea,
towering waves, sea storm, in

€ Recent foundation models for image captioning,
on the other hand, are capable of describing
Images with great accuracy and detail
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Fusion 65 1 —— ViT-base + BLIP rough seas with large waves,
Image (optional) Text LB [*— ViT-base +|IV3+RNN rough seas in background,
ED | | | | | | .

Fusion weight

Image Captioner

€ Modern captioning models can be powerful and

~
group of people explainable feature extractors for image classification

Input standing around o
mage _apile of rubble | ¢ A captioning model and a standard CV model see
Images differently so that fusing the two achieves
‘We (1) evaluate LB with modern image captioning’ even better performance
models in a many-shot setting and (2) try fusing € We plan to verify our finding with more diverse
\them with standard CV models y datasets from different domains
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