

東京工業大学 Tokyo Institute of Technology

A Global Cayley parametrization of Stiefel Manifold for Direct Utilization of Optimization Mechanisms over Vector Spaces Keita Kume and Isao Yamada, Tokyo Institute of Technology

Background & Motivation This study

Summary

- \blacksquare We propose a novel strategy for solving optimization problem over the Stiefel manifold $St(p, N)$ via solving optimization problem over a vector space.
- \blacksquare To this end, we newly define a surjection $\mathfrak{C}: Q \to St(p, N)$ from a vector space Q onto $St(p, N)$, called a global Cayley parametrization.
- \blacksquare We present useful properties of $\mathfrak C$ for optimization, e.g., the Lipschitz continuity of the gradient of $f \circ \mathfrak{C}$.
- Our numerical experiment verifies efficacies of the proposed strategy.

```
Optimization over St(p, N) := \{ U \in \mathbb{R}^{N \times p} \mid U^T U = I_p \}
```
Cayley-type transform Φ_S for $St(p, N)$ [Kume-Yamada'20, EUSIPCO] $\Phi_S: St(p, N) \setminus E_{N, p}(S) \to Q_{N, p} := \left\{ \begin{bmatrix} A & -B^T \\ B & 0 \end{bmatrix} \right\}$ \boldsymbol{B} 0 $A^T = -A \in \mathbb{R}^{p \times p}$ $B \in \mathbb{R}^{(N-p)\times p}$ $X \mapsto$ $A_S(X)$ – $B_S^T(X)$ For $\boldsymbol{S}\in O(N)\coloneqq St(N,N),$ let $E_{N,p}(\boldsymbol{S})\coloneqq\left\{\,\boldsymbol{U}\in St(p,N)\mid \det\!\left(\boldsymbol{I}+\boldsymbol{S}_{le}^{T}\boldsymbol{U}\right)=0\,\right\}\!.$ We define a mapping $\Phi_{\mathcal{S}}$ as vector space Definition

Solve (1) via the following optimization problem over a vector space Q : Global Cayley parametrization (G-CP) strategy

For a given continuous function $f: \mathbb{R}^{N \times p} \to \mathbb{R}$,

find $\mathcal{V}^* \in \min_{\mathcal{V} \in \mathcal{Q}} f \circ \mathfrak{C}(\mathcal{V}) \cdots (3)$

Definition Let $Q := Q_{p+1,p+1} \times Q_{p+1,p+1} \times Q_{N,p}$. Then, the global Cayley parametrization is defined by $\mathfrak{C}: Q \to St(p,N): \mathcal{V} := (V_1, V_2, V_3) \mapsto \Phi_{S(V_1, V_2)}^{-1}(V_3),$ where ${\bm S}({\bm V}_{1},{\bm V}_{2}) \coloneqq \begin{bmatrix} \varphi^{-1}({\bm V}_{1})\varphi^{-1}({\bm V}_{2}) & {\bm 0} \ {\bm 0} & {\bm I}_{1} \end{bmatrix}$ $\mathbf{0}$ \mathbf{I}_{N-p-1} $\in SO(N)$ and $\varphi^{-1}: Q_{p+1,p+1} \to SO(p+1) \setminus E_{p+1,p+1}(I): V \mapsto (I-V)(I+V)^{-1}$ is the inversion mapping of the classical Cayley transform φ .

For a given continuous function $f: \mathbb{R}^{N \times p} \to \mathbb{R}$,

find $U^* \in \text{argmin } f(U) \cdots (1)$ $U \in St(p,N)$

PApplications

Sparse PCA, Joint diagonalization, Enhancement of generalization in Deep Neural Network …

P Main difficulties

- \blacksquare $St(p, N)$ is not a vector space.
	- $\alpha U_1 + \beta U_2 \notin St(p, N)$ $(U_1, U_2 \in St(p, N), \alpha, \beta \in \mathbb{R})$
- Many optimization techniques heavily rely on the linearity.
	- Gradient descent method: $x_{n+1} := x_n + \gamma_n d_n$ $(x_{n+1}, x_n, d_n \in \mathbb{R}^l, \gamma_n \in \mathbb{R})$

- **n** Optimization technique: gradient descent method (GDM)
- Comparison with
	- 1. CP strategy [Kume-Yamada'20]
	- 2. Retraction-based strategy with QR decomposition (QR) [Boumal et al.'14, J. Mach. Res.]
- 1. Joint diagonalizaton problem

 $f(U) \coloneqq \sum$ $i \in \mathcal{I}$ $||\boldsymbol{U}^T \boldsymbol{A}_i \boldsymbol{U} - \mathrm{Diag}(\boldsymbol{U}^T \boldsymbol{A}_i \boldsymbol{U})||^2_F$ $N = 1000, p = 10, |J| = 10$

2. Eigenvalue problem $f(U) \coloneqq -\text{Tr}(\bm{U}^T \bm{A} \bm{U})$ $N = 2000, p = 10$

- ı 1. For $\mathbf{U}^* \in St(p, N)$, \mathbf{U}^* is a local minimizer of (1) $\Leftrightarrow \mathcal{V}^* \in \mathcal{Q}$ s.t. $U^* = \mathfrak{C}(\mathcal{V}^*)$ are local minimizers of (3).
- 2. Let f be differentiable. If $\nabla (f \circ \mathfrak{C})(\mathcal{V}) = 0$ for $\mathcal{V} \in \mathcal{Q}$, then $\mathfrak{C}(\mathcal{V})$ is a stationary point of (1).

We can find a local minimizer (stationary point) of the problem (1) via the problem (3) defined over the vector space Q .

Let $f: \mathbb{R}^{N \times p} \to \mathbb{R}$ be continuously differentiable and $\max ||\nabla f(\mathcal{S}t(p,N)||_F \leq \mu$. Useful properties of $f \circ \mathfrak{C}$ for optimization (Proposition 3.5) Suppose ∇f is Lipschitz continuous with $L > 0$ over $St(p, N)$. Then, $\nabla (f \circ \mathfrak{C})$ is Lipschitz continuous with $24(L + \mu)$ over Q . \blacktriangleright Ex: Lipschitz continuity of $\nabla(f \circ \mathfrak{C})$

 10^0 $\boxed{}$

- **n** $\Phi_{\mathcal{S}}$ is diffeomorphic between the vector space $Q_{N,p}$ and $St(p, N) \setminus E_{N,p}$ with $\Phi_S^{-1}: Q_{N,p} \to St(p,N) \setminus E_{N,p}(S): V \mapsto S(I-V)(I+V)^{-1}I_{le}.$
- \bullet $\varphi := \Phi_I$ with $p = N$ is the classical Cayley transform for $SO(N) := \{ U \in O(N) \mid \det(U) = 1 \}.$
- **n s** of $\Phi_{\mathcal{S}}$ is called a center point because $\Phi_{\mathcal{S}}(\mathcal{S}_{le}) = 0$

Cayley parametrization (CP) strategy

Solve (1) via the following optimization problem over a vector space $Q_{N,p}$:

For a given continuous function $f: \mathbb{R}^{N \times p} \to \mathbb{R}$, find $V^* \in \mathop{\rm argmin} f \circ \Phi_S^ V \in Q_{N,p}$ $S^{-1}(V) \cdots (2)$

 $\{\varphi^{-1}(V_1)\varphi^{-1}(V_2) \mid (V_1,V_2) \in Q_{p+1,p+1} \times Q_{p+1,p+1} \} = SO(p+1)$

Characterization of local minimizer and stationary point by $f \circ \mathfrak{C}$ Γ Key properties for $\mathfrak C$ (Theorem 3.2) \blacksquare

Numerical experiments

G-CP+GDM (proposed) $CP+GDM$

 $St(p, N)$

vector space $Q_{N,p}$

- (1) Translate an initial point $\boldsymbol{U}_0 \in St(p, N)$ into $\boldsymbol{V}_0 := \Phi_S(\boldsymbol{U}_0) \in Q(N, p)$. 2 Update candidate solutions $(V_k)_{k=0}^{n+1}$ ⊂ $Q_{N,p}$ in a vector space $Q_{N,p}$. 3 Translate the solution V_{n+1} into $U_{n+1} := \Phi_S^{-1}(V_{n+1}) \in St(p,N)$.
- \blacksquare We can utilize for (2) directly optimization techniques over a vector space.
- $\blacksquare \Phi_{\mathcal{S}}^{-1}(Q_{N,p}) \subsetneq St(p,N)$ for all $\mathcal{S} \in O(N)$ possibly induces $\min f\big(\mathcal{S}t(p,N)\big) \neq \min f \circ \Phi_S^{-1}\big(Q_{N,p}\big).$

P Natural question

Can we parameterize $St(p, N)$ by a single vector space entirely ?

G-CP strategy has potential to bring numerous optimization mechanisms over a vector space to (1) without losing the performance compared with CP strategy and the retraction-based strategy.

[Kume-Yamada'20] K. Kume and I. Yamada, "A Nesterov-type acceleration with adaptive localized Cayley parametrization for optimization over the Stiefel manifold," in EUSIPCO, 2020. [Gallier'13] J. Gallier, "Remarks on the Cayley representation of orthogonal matrices and on perturbing the diagonal of a matrix to make it invertible," arXiv preprint arXiv:math/0606320v2, 2013. [Boumal et al.'14] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, "Manopt, a matlab toolbox for optimization on manifolds," J. Mach. Res., 2014.

