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Summary
n We propose a novel strategy for solving optimization problem over the

Stiefel manifold 𝑆𝑡(𝑝, 𝑁) via solving optimization problem over a vector space.
n To this end, we newly define a surjection ℭ: 𝒬 → 𝑆𝑡 𝑝, 𝑁 from

a vector space 𝒬 onto 𝑆𝑡(𝑝, 𝑁), called a global Cayley parametrization. 
n We present useful properties of ℭ for optimization, e.g.,

the Lipschitz continuity of the gradient of 𝑓 ∘ ℭ.
n Our numerical experiment verifies efficacies of the proposed strategy.

Optimization over 𝑆𝑡 𝑝, 𝑁 ≔ {𝑼 ∈ ℝ!×# ∣ 𝑼$𝑼 = 𝑰#}

Sparse PCA, Joint diagonalization, Enhancement of generalization in Deep Neural Network … 
Applications

n 𝑆𝑡(𝑝, 𝑁) is not a vector space.
• 𝛼𝑼! + 𝛽𝑼" ∉ 𝑆𝑡 𝑝, 𝑁 (𝑼!, 𝑼" ∈ 𝑆𝑡 𝑝, 𝑁 , 𝛼, 𝛽 ∈ ℝ)

n Many optimization techniques heavily rely on the linearity.
• Gradient descent method: 𝒙#$! ≔ 𝒙# + 𝛾#𝒅# (𝒙#$!, 𝒙# , 𝒅# ∈ ℝ% , 𝛾#∈ ℝ)

Main difficulties

For a given continuous function 𝑓:ℝ!×# → ℝ,
find 𝑼⋆ ∈ argmin

𝑼∈+, -,.
𝑓 𝑼 ⋯(1)

Cayley-type transform Φ𝑺 for 𝑆𝑡(𝑝, 𝑁) [Kume-Yamada’20, EUSIPCO]

Φ𝑺: 𝑆𝑡 𝑝, 𝑁 ∖ 𝐸4,5 𝑺 → 𝑄4,5 ≔ 𝑨 −𝑩$
𝑩 𝟎

𝑨$ = −𝑨 ∈ ℝ#×#
𝑩 ∈ ℝ !%# ×#

𝑿 ↦ 𝑨𝑺 𝑿 −𝑩𝑺6 𝑿
𝑩𝑺 𝑿 𝟎

• 𝑨𝑺 𝑿 ≔ 𝑰 + 𝑺%'( 𝑿
)(

𝑿(𝑺%' − 𝑺%'( 𝑿 𝑰 + 𝑺%'( 𝑿
)!
∈ 𝑄*,*

• 𝑩𝑺 𝑿 ≔ −𝑺,-( 𝑿 𝑰 + 𝑺%'( 𝑿
)! ∈ ℝ .)* ×*.

For 𝑺 ∈ 𝑂 𝑁 ≔ 𝑆𝑡(𝑁,𝑁), let 𝐸!,# 𝑺 ≔ 𝑼 ∈ 𝑆𝑡 𝑝, 𝑁 det 𝑰 + 𝑺'($ 𝑼 = 0 .
We define a mapping Φ𝑺 as 

vector space

Definition

n Φ𝑺 is diffeomorphic between the vector space 𝑄!,# and 𝑆𝑡 𝑝,𝑁 ∖ 𝐸!,# with
Φ𝑺
=>: 𝑄4,5 → 𝑆𝑡 𝑝,𝑁 ∖ 𝐸4,5 𝑺 : 𝑽 ↦ 𝑺 𝑰 − 𝑽 𝑰 + 𝑽 =>𝑰?@.

n 𝜑 ≔ Φ𝑰 with 𝑝 = 𝑁 is the classical Cayley transform
for 𝑆𝑂 𝑁 ≔ {𝑼 ∈ 𝑂 𝑁 ∣ det 𝑼 = 1} .

n 𝑺 of Φ𝑺 is called a center point because Φ𝑺 𝑺'( = 𝟎

𝑺!" 𝑁

𝑝 𝑁 − 𝑝

𝑺 ≔

å

Solve (1) via the following optimization problem over a vector space 𝒬:
Global Cayley parametrization (G-CP) strategy

ı

Definition
Let 𝒬 ≔ 𝑄#+,,#+,×𝑄#+,,#+,×𝑄!,#.
Then, the global Cayley parametrization is defined by

ℭ: 𝒬 → 𝑆𝑡 𝑝, 𝑁 :𝓥 ≔ 𝑽>, 𝑽A, 𝑽B ↦ Φ𝑺 𝑽-,𝑽.
=> (𝑽B),

where 𝑺 𝑽,, 𝑽/ ≔ 𝜑%, 𝑽, 𝜑%, 𝑽/ 𝟎
𝟎 𝑰!%#%,

∈ 𝑆𝑂(𝑁) and

𝜑%,: 𝑄#+,,#+, → 𝑆𝑂 𝑝 + 1 ∖ 𝐸#+,,#+, 𝑰 : 𝑽 ↦ 𝑰 − 𝑽 𝑰 + 𝑽 %, is
the inversion mapping of the classical Cayley transform 𝜑.

Cayley parametrization (CP) strategy

vector space 𝑄.,*

Φ𝑺
%,

Φ0

𝑺'(

𝑆𝑡(𝑝, 𝑁)

𝐸!,# 𝑺

Solve (1) via the following optimization problem over a vector space 𝑄!,#:
For a given continuous function 𝑓:ℝ!×# → ℝ,

find 𝑽⋆ ∈ argmin
𝑽∈;&,(

𝑓 ∘ Φ𝑺
<= 𝑽 ⋯(2)

n We can utilize for ② directly optimization techniques over a vector space.
n Φ𝑺

%, 𝑄!,# ⊊ 𝑆𝑡 𝑝, 𝑁 for all 𝑺 ∈ 𝑂(𝑁) possibly induces
min 𝑓 𝑆𝑡 𝑝, 𝑁 ≠ min 𝑓 ∘ Φ𝑺

%, 𝑄!,# .

Can we parameterize 𝑆𝑡(𝑝, 𝑁) by a single vector space entirely ?
Natural question

① Translate an initial point 𝑼1 ∈ 𝑆𝑡(𝑝, 𝑁) into 𝑽1 ≔ Φ𝑺 𝑼1 ∈ 𝑄(𝑁, 𝑝).
② Update candidate solutions 𝑽2 231

4+, ⊂ 𝑄!,# in a vector space 𝑄!,#.
③ Translate the solution 𝑽4+, into 𝑼4+, ≔ Φ𝑺

%, 𝑽4+, ∈ 𝑆𝑡 𝑝, 𝑁 .

𝑼1
①𝑽1 ≔ Φ𝑺(𝑽1)

②𝑽4+,
③𝑼4+, ≔ Φ𝑺

%, 𝑽4+,

𝑺#$

For a given continuous function 𝑓:ℝ!×# → ℝ,
find 𝓥⋆ ∈ min

𝓥∈𝒬
𝑓 ∘ ℭ 𝓥 ⋯(3)

Basic idea: parameterization of center points 𝑺 by a single vector space
𝑄#+,,#+,×𝑄#+,,#+,

𝑆𝑡(𝑝, 𝑁)

Φ𝑺 !
%,

Φ𝑺 !

𝑺'(
(6)

𝑺'(
(8)Φ𝑺 "

%,

Φ𝑺 "

vector spaces 𝑄!,#

ℭ

Map data: Ⓒ2020 Google, INEGI

vector space 𝒬
(stacking 𝑄!,#)

𝜑%, 𝑽, 𝜑%, 𝑽/ 𝑽,, 𝑽/ ∈ 𝑄#+,,#+,×𝑄#+,,#+, = 𝑆𝑂(𝑝 + 1)
Lemma [Weyl’46, The Classical Groups]

Let Q𝑆𝑂#+, 𝑁 ≔
R𝑻 𝟎
𝟎 𝑰!%#%,

∈ 𝑆𝑂 𝑁 R𝑻 ∈ 𝑆𝑂 𝑝 + 1 .

It holds Φ𝑺
%, 𝑽 𝑺, 𝑽 ∈ Q𝑆𝑂# 𝑁 ×𝑄!,# ≅ 𝑆𝑂 𝑝 + 1 ×𝑄!,# = 𝑆𝑡(𝑝, 𝑁).

Combined with the following lemma, we can derive the surjection of 𝕮.

å

Numerical experiments

G-CP strategy has  potential to bring numerous optimization mechanisms 
over a vector space to (1) without losing the performance compared with 
CP strategy and the retraction-based strategy.

n Optimization technique:
gradient descent method (GDM)

n Comparison with
1. CP strategy [Kume-Yamada’20]
2. Retraction-based strategy

with QR decomposition (QR)
[Boumal et al.’14, J. Mach. Res.]

1. Joint diagonalizaton problem

𝑓 𝑼 ≔E
-∈ℐ

||𝑼(𝑨-𝑼 − Diag 𝑼(𝑨-𝑼 ||2"

• 𝑁 = 1000, 𝑝 = 10, ℐ = 10

2. Eigenvalue problem
𝑓 𝑼 ≔ −Tr 𝑼(𝑨𝑼

• 𝑁 = 2000, 𝑝 = 10

å

Characterization of local minimizer and stationary point by 𝑓 ∘ ℭ

ı

1. For 𝑼⋆ ∈ 𝑆𝑡(𝑝, 𝑁), 𝑼⋆ is a local minimizer of (1)
⇔ 𝓥⋆ ∈ 𝒬 s.t. 𝑼⋆ = ℭ(𝓥⋆) are local minimizers of (3).

2. Let 𝑓 be differentiable. If ∇ 𝑓 ∘ ℭ 𝓥 = 𝟎 for 𝓥 ∈ 𝒬,
then ℭ(𝓥) is a stationary point of (1).

Key properties for ℭ (Theorem 3.2)

We can find a local minimizer (stationary point) of the problem (1)
via the problem (3) defined over the vector space 𝓠.

å

Useful properties of 𝑓 ∘ ℭ for optimization (Proposition 3.5)

Let 𝑓:ℝ!×# → ℝ be continuously differentiable and max ||∇𝑓(𝑆𝑡 𝑝, 𝑁 ||9 ≤ 𝜇 .
Suppose ∇𝑓 is Lipschitz continuous with 𝐿 > 0 over 𝑆𝑡(𝑝, 𝑁).
Then, ∇(𝑓 ∘ ℭ) is Lipschitz continuous with 24(𝐿 + 𝜇) over 𝒬.

Ex: Lipschitz continuity of ∇(𝑓 ∘ ℭ)

Fig.2 Result of the eigenvalue problem

Fig.1 Result of the joint diagonalization problem


