Non-separable Wavelet Transform Using Learnable Convolutional Lifting Steps

Joao O. Parracho^{*†}, Eduardo A. B. da Silva[†], Lucas A. Thomaz^{*‡}, Luis M. N. Tavora^{*‡}, and Sergio M. M. Faria^{*‡}

> * Instituto de Telecomunicações, Leiria, Portugal
> [‡]ESTG, Polytechnic of Leiria, Leiria, Portugal
> [†]Electrical Engineering Program, COPPE — Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

instituto de telecomunicações

- 2 Wavelet Transforms Using Lifting
- ⁽³⁾ Lifting operators implementation through CNNs
- 4 Experimental Assessment

Objectives

- 2D non-separable learnable Wavelet
 - CNN-based lifting scheme
- End-to-end optimised codec

Learnable Wavelet transf

• It generates **four** distinct subbands:

- Low-pass (L)
- Horizontal (H)
- Vertical (V)
- Diagonal (D)

Learnable Wavelet

HOW ?

1D Lifting scheme

- **Predict operator** $P(\cdot)$: Predict a polyphase component based on the other one
- Update operator $U(\cdot)$: Refine coarse details

Generic Non-Separable 2D Lifting Scheme

- It comprises three predict (P_1, P_2, P_3) and three update (U_1, U_2, U_3) steps, with three inputs each
- The lifting operators can use information across all directions

Proposed Non-Separable 2D Lifting

<i>a</i> ₀₁	a_{02}	a_{03}	0
a_{10}	0	a_{12}	0
a_{21}	a_{22}	a_{23}	0
0	0	0	0

Stride = 2

Proposed Non-Separable 2D Lifting: U_1

[0	0	0	0
0	a_{11}	a_{12}	a_{13}
0	a_{21}	0	a_{23}
0	a_{31}	a_{32}	a_{33}

Proposed Non-Separable 2D Lifting: U_2

L V' L V' H' D H' D L V' L V' H' D H' D

Proposed Non-Separable 2D Lifting: U_2

L V' L V' H' D H' D L V' L V' H' D H' D

Proposed Non-Separable 2D Lifting: U_2

L V' L V' H' D H' D L V' L V' H' D H' D

L V' L V' H' D H' D L V' L V' H' D H' D

Proposed Non-Separable 2D Lifting: U_3

L V L V H' D H' D L V L V H' D H' D

Proposed Non-Separable 2D Lifting: U_3

L V L V H' D H' D L V L V H' D H' D

Proposed Non-Separable 2D Lifting: U_3

L V L V H' D H' D L V L V H' D H' D

 $\begin{array}{cccc} L & V & L & V \\ H' & D & H' & D \\ L & V & L & V \\ H' & D & H' & D \end{array}$

0	0	a_{03}	0
0	0	0	0
0	0	a_{23}	0
0	0	0	0

Proposed Non-Separable 2D Lifting: P_3

Proposed Non-Separable 2D Lifting: P_3

Proposed Non-Separable 2D Lifting: P_3

L V L V H D H D L V L V H D H D

How can the lifting operators be implemented through CNNs?

- Architecture proposed in the seminal paper iWave++ [1]
- **ResNet** architecture with **multi-channel** convolutional layers
- Separable wavelet transform

[1] H. Ma, D. Liu, N. Yan, H. Li, and F. Wu, "End-to-end optimized versatile image compression with wavelet-like transform," IEEE Tran. on Pattern Analysis and Machine Intelligence, vol. 44, no. 3, pp. 1247–1263, Sep. 2022.

Does it need to have so many coefficients Are that many channels needed

Proposed learnable lifting steps

- d: Bit-depth of the input image
- α : Learnable parameter

Proposed learnable lifting steps

- d: bit-depth of the input image
- α : learnable parameter

Proposed learnable lifting steps

- *d*: bit-depth of the input image
- α : learnable parameter
- Initialised with the corresponding predict or update operator of the separable 5-3 wavelet

End-to-end coder

- **Reference**: Lossless version of iWave++ codec
- Replaced with the proposed 2D non-separable wavelet transform

2D NSWT-LCLS - Kodak

2D Wavelet	Predict/Update	No. of learnable	Rate
transform	modules	coefficients	(bpp)
iWave++	Multi-channel ResNet	39560	8.97
2D NSWT-LCLS	Proposed	264	8.70

Experiment 1: Variant A

Experiment 1: Comparison of the proposed learnable lifting operator with variant A

Predict/Update	No. of	Ra		
Modules	learnable	CLIC.pro	DIV2K	Kodak
	coefficients			
Proposed	264	7.70	7.89	8.70
Variant A	384	7.73	8.03	8.71

Experiment 2: Variant B (iWave++)

Experiment 2: Comparison of the proposed learnable lifting operator with variant B

Predict/Update	No. of	Ra		
Modules	learnable	CLIC.pro	DIV2K	Kodak
	coefficients			
Proposed	264	7.70	7.89	8.70
Variant B	118824	7.79	8.07	8.80

Experiment 3: Variant C

Experiment 3: Comparison of the proposed learnable lifting operator with variant C

Predict/Update	No. of	Ra		
Modules	learnable	CLIC.pro	DIV2K	Kodak
	coefficients			
Proposed	264	7.70	7.89	8.70
Variant C	118944	7.88	8.15	8.83

Generic Non-Separable 2D Lifting

Comparison between the generic and proposed 2D non-separable lifting architecture

2D Non-Separable	Predict/Update	No. of	Rate (bpp)		
Lifting	Modules	learnable	CLIC.pro	DIV2K	Kodak
Architecture		coefficients			
Proposed	Proposed	264	7.70	7.89	8.70
Generic	Proposed	456	7.82	8.10	8.82

Experiment 5: Variant A

Experiment 5: Variant A

2D N	Ion-Separable	Predict/Update	No. of	Rate (bpp)		
	Lifting	Modules	learnable	CLIC.pro	DIV2K	Kodak
Aı	$\mathbf{rchitecture}$		coefficients			
	Proposed	Proposed	264	7.70	7.89	8.70
	Generic	Variant A	480	7.87	8.13	8.84

Experiment 6: Variant B (iWave++)

Experiment 6: Variant B (iWave++)

$2D$ Γ	Non-Separable	Predict/Update	No. of	Rate (bpp)		
	Lifting	Modules	learnable	CLIC.pro	DIV2K	Kodak
Α	$\mathbf{rchitecture}$		coefficients			
	Proposed	Proposed	264	7.70	7.89	8.70
	Generic	Variant B	118920	7.82	8.10	8.82

Experiment 3: Variant C

Experiment 3: Variant C

2D	Non-Separable	Predict/Update	No. of	Rate (bpp)		
	Lifting	Modules	learnable	CLIC.pro	DIV2K	Kodak
	Architecture		coefficients			
(Proposed	Proposed	264	7.70	7.89	8.70
	Generic	Variant C	119136	9.23	9.18	9.47

Conclusions of developed work

- Results highlight **superior compression performance** compared to state-of-the-art end-to-end wavelet-based frameworks
- 150-fold reduction (39560 to 264) in learnable coefficients

Conclusions of developed work

- Results highlight **superior compression performance** compared to state-of-the-art end-to-end wavelet-based frameworks
- 150-fold reduction (39560 to 264) in learnable coefficients

The deeper understanding and application of signal processing principles in the design of learning-based systems can lead to simpler and more effective solutions

Thank you!

joao.parracho@smt.ufrj.br