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Background

• In Hyperspectral Image Classification
(HSI), the typical process involves
manually labeling a subset of the
acquired image samples to create the
training set to predict the labels for the
remaining unlabeled samples in the
testing set.

• Since manual labeling is a labor-intensive
and time-consuming task requiring
expert knowledge, it is desirable to
minimize the number of samples that
need to be manually labeled. Therefore,
practical hyperspectral imaging always
strives for accurate classification from the
fewest possible labeled samples.

• In this work, we aim to reach the high
classification rates of current deep
learning methods with the training data
requirement of shallow learning
techniques.

• Another unique aspect of hyperspectral
imaging is that the samples are spatially
correlated; i.e. contiguous locations are
likely to belong to the same class unless
they are along the edges.

Conclusion and References

Methodology

Fig. 1. Pictorial view of classification. Top – Indian Pines. Bottom – Pavia. Left to Right –
AttentionNet, GANCap, DCN-T, ECR, Proposed Synthesis, and Proposed Analysis

Objectives
• In this work, we propose a unified semi-

supervised feature learning framework
that jointly learns the features for both
the labeled and unlabeled samples in
such a fashion that features are spatially
correlated via a graph structure.

• The generated features are input to a
third-party classifier for final
classification.

• Our work is based on the framework of
Deep Dictionary Learning (DDL) and Deep
Transform Learning (DTL) [14].

• In DDL, X is the input data, D1, D2, D3 are
three layers of dictionaries and Z is the
coefficient / representation.

• In DTL, T1, T2, T3 are three layers of
transforms and Z is the coefficient/
representation.

The goal of this work was to propose a technique that can
pragmatically solve hyperspectral image classification problems. It
takes into account two unique aspects of hyperspectral image
classification – 1. The total number of samples to be labeled is
fixed; and 2. The samples are spatially correlated. The first aspect
results in a semi-supervised formulation. The second aspect is
modeled by graph regularization.
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Results

DDL based Formulation: Synthesis Version

DTL based Formulation: Analysis Version
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Solution via Alternating Minimization
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DTL based Formulation: Analysis Version

Update Step of Bregman Relaxation Variables
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Dataset Metric AttentionNet GANCap DCN-T ECR Proposed
Synthesis

Proposed 
Analysis

Pavia 
University 

OA 80.09 82.02 88.91 86.24 89.79 88.67

AA 80.26 82.69 88.48 87.41 90.08 88.11

Kappa .78 .80 .85 .84 0.85 0.85

Indian 
Pines

OA 70.36 73.32 77.38 75.85 81.02 78.02

AA 70.95 74.07 77.91 76.30 84.32 79.42

Kappa .69 .72 .77 .75 0.80 0.78

Method

Time (in seconds rounded)

Pavia 

University
Indian Pines

AttentionNet 250 103

GANCap 304 129

DCN-T 327 112

ECR 571 206

Proposed 

Synthesis
418 177

Proposed 

Analysis
933 365

Pavia University Indian Pines

Proposed

Synthesis

Proposed

Analysis

Proposed

Synthesis

Proposed

Analysis

Layer: 1 87.87 86.29 77.18 76.13

Layers: 2 88.92 88.00 80.51 78.55

Layers: 3 89.79 88.67 81.02 79.42

Layers: 4 89.06 88.14 80.60 78.95

Layers: 5 86.15 86.45 78.83 77.68


