

Streamlined Hybrid Annotation Framework using Scalable Codestream for Bandwith-Restriced **UAV Object Detection Paper ID: 2085**

Karim El Khoury*, <u>Tiffanie Godelaine</u>*, Simon Delvaux, Sébastien Lugan, and Benoît Macq ICTEAM, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

1. CONTEXT: UAVs are essential in emergency scenarios

2 challenges for decision-making: Fast transmission and annotation → Use of multiresolution and hydrid annotation to allow **fast** and **accurate** decisions while saving expert time

2. METHOD: Proposed approach

UAV

GROUND STATION

3 improvements:

- Scenario constraints are **integrated** to determine the highest available resolution **LR** instead of HR (baseline)
- Only tiles selected for human annotator are sent in HR
- DL models are fine-tuned at different resolution levels

3. EXPERIMENTAL SETUP: Application on satellite images of airports with aircrafts

- 165 HR images (60 MP)
- Fine-tuned Yolov8 on 5 resolutions levels
- BW fixed : 176, 88 and 22 kbps
- Level of emergency fixed, determined by t_{RSlimit}: 3, 10 and 30 min (\mathbf{r})
- 2 metrics to compare the proposed approach to the baseline : t_{RS}_ratio and recall_diff

		3	10	30
_	176	$0.257 \\ 7.08$	$\begin{array}{r} 0.112 \\ \hline 3.67 \end{array}$	$\begin{array}{r} 0.028 \\ 1.54 \end{array}$
_	80	0.35	0.148	0.028
		25.44	7.27	2.95

4. RESULTS: Response time is reduced by a factor of 34

176 kpbs:

Proposed transmits LR tiles LR \rightarrow Improvement of t_{RS}_ratio Baseline always transmits HR tiles \rightarrow Penalty in *recall diff* because performance of fine-tuned model at HR is better

88 kpbs:

Higher improvement of t_{RS}_*ratio* and lower decrease of *recall_diff* because budget for human annotation is lower

22 kbps:

Highest gain in t_{RS}. However, at 3min, even the lowest LR cannot be sent because the BW is too restrictive

[1] Preethy Byju, et al., "Remote-sensing image scene classification with deep neural networks in jpeg 2000 compressed domain," IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 3458–3472, 2021.

[2] El Khoury, et al., "Improved 3d u-net robustness against jpeg 2000 compression for male pelvic organ segmentation in radiotherapy," Journal of Medical Imaging, vol. 8, no. 04, 2021.

[3] El Khoury, et al., "Improving 3d lesion segmentation robustness against image compression in multiple sclerosis," in 2024 IEEE International Symposium on Biomedical Imaging, 2024, p. 1.

[4] Yamani, et al., "Active learning for single-stage object detection in uav images," in Proceedings of the IEEE/CVFWinter Conference on Applications of Computer Vision (WACV), January 2024, pp. 1860–1869.

[5] Palmaerts, et al., "Oriented aircraft object detector using scaled yolov4 on very high resolution satellite and synthetic datasets," in 2023 Joint Urban Remote Sensing Event (JURSE), 2023, pp. 1–4.

The combination of fine-tuned DL model and human annotation with multiresolution allows to speed up the decision-making process in BW limited scenarios, up to 34 times in the most restrictive case **FUTURE WORKS** will focus on optimizing each component of the framework (fine-tuning of the model) and tile selection strategy for human annotation)

The Pléiades images were obtained via the Pléiades 4 Belgium platform under an agreement with BELSPO and labeled by ISSeP. T. Godelaine (tiffanie.godelaine@uclouvain.be) is supported by MedReSyst, funded by the Walloon Region and the EU Wallonie. *Denotes equal contribution