
CASCADING UNKNOWN DETECTION WITH KNOWN CLASSIFICATION FOR OPEN SET
RECOGNITION

Daniel Brignac, Abhijit Mahalanobis

University of Arizona
Department of Electrical and Computer Engineering

Tucson, AZ

ABSTRACT

Deep learners tend to perform well when trained under the
closed set assumption but struggle when deployed under open
set conditions. This motivates the field of Open Set Recog-
nition in which we seek to give deep learners the ability
to recognize whether a data sample belongs to the known
classes trained on or comes from the surrounding infinite
world. Existing open set recognition methods typically rely
upon a single function for the dual task of distinguishing be-
tween knowns and unknowns as well as making known class
distinction. This dual process leaves performance on the table
as the function is not specialized for either task. In this work,
we introduce Cascading Unknown Detection with Known
Classification (Cas-DC), where we instead learn specialized
functions in a cascading fashion for both known/unknown
detection and fine class classification amongst the world of
knowns. Our experiments and analysis demonstrate that
Cas-DC handily outperforms modern methods in open set
recognition when compared using AUROC scores and cor-
rect classification rate at various true positive rates.

Index Terms— Open Set Recognition, Unknown Detec-
tion

1. INTRODUCTION

Recent studies have demonstrated the capacity of deep learn-
ers to achieve or even surpass human-level performance, par-
ticularly in the image recognition domain. This performance
is typically achieved under the closed set assumption, how-
ever, in which the classes used for training the model are fixed
and the model should only make predictions on this prede-
fined set of classes. In practicality, the model may actually be
deployed under open set conditions where the classes used for
training are only a subset of the infinite surrounding world and
the model must be able to distinguish between these known,
trained on classes and the encompassing open world.

Conventionally, deep neural networks struggle under
these open set conditions as they will confidently map un-
known classes to the known class decision space [1, 2] as
demonstrated in Figure 1. This motivates the study of Open

Fig. 1: In conventional learning, classes from the known
space (training classes) and the infinite surrounding image
space map to the same decision space. Open set recognition
methods allow the decision space to map back to the infinite
surrounding image space by means of an ”unknown” label.

Set Recognition where we seek to discriminate between the
world of knowns the model is trained on and the surrounding
infinite unknown space.

Open set recognition was first formalized in [3] and has
since inspired an entire subfield of research. One of the first
lines of work focused on an analysis of test time softmax
scores [2] as classifiers trained under the closed set assump-
tion tend to produce low softmax probabilities for samples be-
longing to the unknown space. [4] takes a similar route by ex-
tending the softmax layer to allow prediction of an unknown
class. These softmax based methods still suffer in open set
recognition due to the inherent limitations of training the net-
works under the closed set assumption [5].

Other methods take a generative approach [6, 7] in an at-
tempt to generate samples belonging to the unknown world,
or a distance-based approach [8, 9] by thresholding a distance
to the nearest known class. While these methods perform bet-
ter than traditionally used softmax score analysis, they still do
not perform to their maximum capability as they have no true
representation for what the world of unknowns may resemble.

Additionally, most current open set methods operate un-
der the proposed setup of [3] in which a single function is



given the task of distinguishing between knowns and un-
knowns and additionally making fine distinction amongst the
world of knowns (i.e, classification). This leads to a function
that may perform relatively well for this joint task, but is not
specialized for either task leaving performance on the table.

To this end, we introduce our method Cascading Un-
known Detection with Known Classification (Cas-DC) to bet-
ter address these shortcomings. In Cas-DC, we hypothesize
that the known and unknown classes should clearly separate
in the embedding space. This separation can be accomplished
by training an embedding network with a representative set
of the unknown world referred to as known unknowns as in
[10]. Each embedding space can then be represented by its
respective prototype for best separation. Furthermore, we
train a classifier network under the closed set assumption for
discrimination amongst the world of knowns. At test time,
we can determine if a sample belongs to the world of knowns
or unknowns by setting a threshold on the distance to the un-
known prototype, and if a sample is deemed as known, we can
query the classifier to determine its class. This formulation
of two specialized decision functions trained in a cascading
fashion allows each to be an expert in their respective task
leading to higher performance when combined together.

2. PRELIMINARIES

We first establish the formalities of the open set recog-
nition problem before formulating our proposed solution
[3, 11, 5]. Suppose we are given a dataset DKK of n la-
beled data points we will refer to as known knowns, namely
DKK = {(x1, y1), ..., (xn, yn)} where yi ∈ {1, ..., C} is the
label for xi for C unique class labels in DKK . At test time,
we will perform inference on the larger test data DT con-
sisting of data from DKK as well as data from an unknown
set DUU , which we refer to as unknown unknowns, whose
labels ti /∈ {1, ..., C}. That is DT = DKK ∪ DUU . We
denote the embedding space of known category k as Sk with
corresponding open space Ok = Rd−Sk where Rd is the full
embedding space consisting of known knowns and unknown
unknowns. We further define the positive open space from
other known knowns as Opos

k and the remaining infinite space
consisting of unknown unknowns as the negative open space
Oneg
k , that is Ok = Opos

k ∪ Oneg
k .

We first introduce open set recognition for a single known
class and then extend to the multi-class scenario. Given the
data DKK , let samples from known category k be positive
training data occupying space Sk, samples from other known
classes be negative training data occupying space Opos

k , and
all other samples from Rd be unknown data, DUU , occupying
space Oneg

k . Let ψk : Rd → {0, 1} be a binary measurable
prediction function which maps the embedding x to label y
with the label for the class of interest k being 1. In this 1-
class scenario, we wish to optimize the discriminant binary

function ψk by minimizing the expected error Rk as

argmin
ψk

{Rk = Ro(ψk,Oneg
k ) + αRϵ(ψk,Sk ∪ Opos

k )} (1)

where Ro is the open space risk function, Rϵ is the empirical
classification risk on the known data, and α is a regularization
parameter.

We can extend to the multiclass recognition problem by
incorporating multiple binary classification tasks and sum-
ming the expected risk category by category as

C∑
k=1

Ro(ψk,Oneg
k ) + α

C∑
k=1

Rϵ(ψk,Sk ∪ Opos
k ) (2)

leading to the following formulation

argmin
f∈H

{Ro(f,DUU ) + αRϵ(f,DKK)} (3)

where f : Rd → N is a measurable multiclass recognition
function. From this, we can see that solving the open set
recognition problem is equivalent to minimizing the combina-
tion of the empirical classification risk on the labeled known
data DKK and open space risk on the unknown data DUU
simultaneously over the space of allowable recognition func-
tions H.

3. METHODOLOGY

3.1. Cascading Unknown Detection with Known Classifi-
cation

In the traditional formulation of the open set recognition prob-
lem as described above, we assume a singular embedding
space Rd consists of N discriminant spaces for all known
categories with all remaining space being the open space con-
sisting of infinite unknowns. In formulating the framework of
Cas-DC, we instead postulate that the embedding space Rd
is composed of two disjoint spaces, namely a known space
Sknown and an unknown space Ounknown. That is to say that
all of DKK belongs to the space Sknown and all of DUU be-
longs to the infinite surrounding open space Ounknown. Thus,
the open space is formulated as Ounknown = Rd − Sknown

Under this new assumption of the embedding space, we
can now pose a new formulation of the open set recognition
problem by introducing a cascading optimization procedure
where we wish to optimize both a binary prediction function
h : Rd → {0, 1} which maps the embedding of data x to the
label of known or unknown, and the classification function
f : xi → N which maps the known data xi to their respective
target label yi ∈ {1, ..., N} as

argmin
h

{Ro(h,Rd)} (4a)

argmin
f

{Rϵ(f,Sknown)} (4b)



(a) We train a classifier network fθ′ using only data consisting of
known knowns with cross-entropy loss and an embedding network
gθ using known knowns data and a representative set of the unknown
data termed known unknowns with triplet loss.

(b) At test time we take a test sample and feed it to gθ to get an
embedding vector. We then feed that vector to the discriminator h
for known/unknown declaration. If known, we additionally feed the
sample to the classifier fθ′ to obtain a fine class label.

Fig. 2: Cas-DC training procedure (a) and inference procedure (b).

where Ro is the open space risk and Rϵ is the empirical clas-
sification risk. Based on this formulation we can see that the
first optimization procedure leads to another binary prediction
function h similar to the traditional formulation while the sec-
ond procedure leads to a multiclass prediction function f .

All that remains now is to find a method that best creates
the full embedding space Rd to give a simple discriminant
function h and obtain a high performing multiclass prediction
function f .

3.2. Embedding Separation of Knowns and Unknowns

We first focus on the discrimination between knowns and un-
knowns in the embedding space Rd. A deep neural network
gθ : x → Rd is used as an embedding network to obtain
embedding vectors for all data x ∈ DKK ∪ DUU . In or-
der to enforce the separation between the spaces Sknown and
Ounknown, the triplet loss [12] is a natural choice of loss func-
tion to use when training gθ. One could consider using other
contrastive learning methods such as contrastive loss [13] or
tuplet loss [14], however, the choice to use triplet loss was
made as contrastive loss only considers pairs and tuplet loss
is a more general version of triplet loss.

With the triplet loss, we can treat all training data in
DKK as the positive samples. For negative samples, we now
need to find a representation of DUU for modeling the space
Ounknown. Of course this open space and therefore this
dataset is infinite, but we can use a representative set of DUU
we refer to as known unknowns, DKU ⊆ DUU , to train gθ for
embedding space separation of knowns and unknowns. The
choice to use a representative training set DKU to represent
the entire world of unknowns is taken from out-of-distribution
detection literature [15, 16, 17, 18]. Similar to [16], we only
use DKU during the training stage. At inference, we evaluate
on the test data DT = DKK ∪ DUU .

Now armed with the known training set DKK and repre-
sentative unknown training set DKU , we can formalize use of
the triplet loss to train gθ as

Lgθ =

n∑
i=1

||gθ(xai )−gθ(xKKi )||22−||gθ(xai )−gθ(xKUi )||22+β

(5)
where xai is a known known anchor, xKKi is a known known
positive sample, xKUi is a known unknown negative sample,
and β is a margin that is enforced between the positive and
negative pairs.

3.3. Discrimination Between Knowns and Unknowns

With a binary discriminant embedding space Rd now at hand,
we must now develop the discriminant function h to differen-
tiate between knowns and unknowns. As such, we draw inspi-
ration from [19, 20, 4] by measuring the distance to the em-
bedding prototypes for known/unknown discrimination. We
represent each of the known and unknown clusters in the em-
bedding space by their respective prototype determined by
taking the means of the known knowns, µKK , and known
unknowns, µKU , in the embedding space.

We then measure the Euclidean distance to µKU and set
a threshold for final determination of whether a test sample
is known or unknown. Thus, the binary function h takes the
form

h =

{
known if d(gθ(xt), µKU ) > τ

unknown if d(gθ(xt), µKU ) ≤ τ
(6)

where xt is a test sample from DT , d(gθ(xt), µKU ) =
||gθ(xt) − µKU ||22 is the Euclidean distance between the
embedding of xt and the known unknown prototype µKU
and τ is a threshold.



3.4. Management of Open Space Risk

In theory, the open space Ounknown is infinite making for dif-
ficult management of the open space risk Ro. We instead opt
to indirectly bound this open space for easier management of
Ro as a direct bounding would be nearly impossible due to
the infinite nature of Ounknown. By enforcing the distance
between samples from Sknown and Ounknown to be outside
some predefined margin of separation we are able to indi-
rectly bound Ounknown. This bounding procedure gives rise
to Eq. 5 which enforces the distance between samples from
the known knowns and known unknowns to be greater than or
equal to the margin β.

The use of DKK and DKU in the training of gθ for em-
bedding space separation gives rise to the bounding spaces
Bknown and Bunknown respectively. Ideally, these spaces
would be completely separable in Rd, but in practicality there
will be some overlap in the margin region. By representing
each bounding space by its prototype as described above,
we are able to achieve greater separation in Rd. As a result,
training with triplet loss for separation between Bknown and
Bunknown and further representing each bounding region
with its appropriate prototype for final binary prediction can
be viewed as managing the open space risk Ro(h,Rd) in Eq.
4.

3.5. Distinction Amongst Knowns

The last remaining step is now developing a way to best iden-
tify which known class a sample belongs to for reduction of
the empirical classification risk Rϵ. In order to distinguish
fine class labels amongst the world of knowns, we train a
separate deep neural network fθ′ using cross-entropy loss in
parallel with the embedding network gθ. As fθ′ is only con-
cerned with classification of the knowns, we only use the data
from DKK to train the classifier. Figure 2a shows the full
training procedure for training the multiclass prediction func-
tion fθ′ and the embedding network gθ.

At the inference stage, we only query fθ′ for a fine class
label if the binary discriminant function h predicts that a test
sample xt belongs to the known space Sknown. Otherwise,
xt is assigned to the world of unknowns. Figure 2b gives an
overview for the entire inference stage.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

Datasets. We test on six commonly used datasets in open
set recognition literature. In the MNIST and SVHN datasets,
we randomly choose 6 classes as known and the remaining
4 classes as unknown. Each of the CIFAR datasets is taken
from either CIFAR10 or a combination of CIFAR10 and
CIFAR100. For CIFAR10 experiments, all experiments are
performed by treating the 6 non-vehicle classes as known

classes and the remaining 4 vehicle classes as the unknown
(i.e., open) classes. CIFAR+M experiments takes the 4 vehi-
cle classes from CIFAR10 as known and randomly samples
from M disjoint classes (i.e., non-vehicle classes) from the
CIFAR100 dataset. Lastly, in Tiny-Imagenet experiments we
randomly choose 20 classes as the known classes and treat all
other 180 classes as unknown.

Metrics. We use the standard area under the ROC curve
(AUROC) as the main metric when evaluating the perfor-
mance of all compared methods. A draw back of AUROC
as commonly reported in open set trials, is it only takes into
consideration known/unknown discrimination. A good open
set recognizer should be able to additionally discriminate
amongst the knowns given that a sample is predicted to be
known. For this reason we additionally report the correct
classification rate (CCR) at 95% true positive rate (TPR) of
known detection.

Compared Methods. We compare our method, Cas-DC,
to five open set recognition methods that are most compara-
ble in regards to methodology. Counter-factual images [6]
uses a GAN to generate counter examples to the known class
which are then treated as the unknown class and used to train
a ”K + 1” classifier where the (K + 1)th class is the un-
known class. Similar to our method, outlier exposure [16]
uses known unknowns to fine-tine a classifier for open set de-
tection based on the output softmax score. Class anchor clus-
tering (CAC) [21] poses a new loss function to entice each
of the distinct known classes to cluster around their respec-
tive standard basis vector so that the unknown classes will
then occupy the remaining open space. A distance threshold
is then used for distinct known or unknown discrimination
similar to Cas-DC. Adversarial Reciprocal Point Learning +
confusion samples (ARPL+CS) [22] learns reciprocal points
for each known class open space while simultaneously using a
generator to generate confusing training samples to encourage
known class separation in the latent space and uses a distance
measure to the furthest reciprocal point to obtain a probability
of belonging to a particular known class. Lastly, [23] propose
that the best open set recognition model is simply one that is
a Good Classifier for the closed-set scenario. With this good
closed-set classifier at hand, an analysis of the maximum logit
score produced by a sample is used in the final determination
of distinct known or unknown.

Setup. For all methods, we train on the dataset splits
described above. For neural network architectures, we use
Resnet18 in all tested methods for fairest comparisons ex-
cept in counterfactual images and CAC. We keep the architec-
tures unchanged in both of these methods as the former used
a specific generator and discriminator for best GAN perfor-
mance and the latter did not allow simplistic modulation with
a Resnet encoder. Besides described architecture changes,
all other hyperparemeters for compared methods remain un-
changed. All methods are trained via SGD with standard L2
regularization. For Cas-DC, the margin of separation β in



Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 Tiny-Imagenet

Counter-Factual Images 0.9857 ± 0.006 0.9081 ± 0.008 0.6999 ± 0.006 0.8251 ± 0.004 0.8168 ± 0.001 0.5734 ± 0.007
Outlier Exposure* 0.9814 ± 0.002 0.9056 ± 0.011 0.9354 ± 0.014 0.8482 ± 0.018 0.9570 ± 0.002 0.7215 ± 0.006

Class Anchor Clustering 0.8187 ± 0.011 0.9038 ± 0.015 0.7156 ± 0.002 0.7425 ± 0.013 0.7721 ± 0.002 0.5452 ± 0.036
Good Classifier 0.9894 ± 0.001 0.9058 ± 0.012 0.7479 ± 0.008 0.7734 ± 0.014 0.7720 ± 0.002 0.6291 ± 0.016

ARPL+CS 0.9900 ± 0.001 0.9342 ± 0.005 0.7813 ± 0.002 0.8346 ± 0.005 0.8241 ± 0.004 0.6402 ± 0.023

Cas-DC (Ours)* 0.9930 ± 0.001 0.9498 ± 0.017 0.9752 ± 0.002 0.9264 ± 0.008 0.9475 ± 0.002 0.7240 ± 0.020

Table 1: Reported AUROC score means and standard deviations for each tested method for the various tested datasets averaged
over 3 runs. The character (*) signifies the use of known unknowns during the training procedure.

Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 Tiny-Imagenet

Class Anchor Clustering 0.9950 ± 0.0003 0.8751 ± 0.056 0.688 ± 0.009 0.8869 ± 0.004 0.8805 ± 0.007 0.3773 ± 0.038
Outlier Exposure* 0.9958 ± 0.001 0.9549 ± 0.004 0.7439 ± 0.024 0.8525 ± 0.021 0.9022 ± 0.0006 0.6183 ± 0.021

Good Classifier 0.9599 ± 0.005 0.7260 ± 0.021 0.5650 ± 0.001 0.5731 ± 0.012 0.5694 ± 0.003 0.5263 ± 0.002
ARPL+CS 0.9508 ± 0.013 0.8340 ± 0.002 0.6571 ± 0.002 0.8233 ± 0.002 0.5821 ± 0.004 0.1732 ± 0.004

Cas-DC (Ours)* 0.9961 ± 0.001 0.9550 ± 0.008 0.6947 ± 0.0001 0.8670 ± 0.004 0.8700 ± 0.0008 0.6194 ± 0.029

Table 2: Reported CCR at 95% TPR score means and standard deviations for each tested method for the various tested datasets
averaged over 3 runs. The character (*) signifies the use of known unknowns during the training procedure.

Eq. 5 is found empirically and a combination of semihard
and hard negative mining are used for finding triplets. Results
for best β selection are found in the supplementary material.
Lastly, we use half of unknown classes for all datasets as the
training set DKU in Cas-DC. We additionally report various
percentages of full unknown dataset used for DKU in the sup-
plementary material.

4.2. Results Comparison

We first evaluate the performance of Cas-DC vs. all other
compared methods from an AUROC standpoint. Table 1
shows AUROC results averaged across 3 runs for all meth-
ods. We observe that Cas-DC either outperforms or is very
competitive with all compared methods for all datasets. This
can be attributed to Cas-DC’s specialized function h for dec-
laration of knowns and unknowns whereas all other methods
use a singular function for both known/unknown discrimina-
tion and known class distinction as is commonly done in the
traditional formulation of the open set recognition problem in
Eq. 3.

Additionally, Cas-DC’s h discriminator is further assisted
by clear known and unknown separation in the embedding
space Rd as initially hypothesized by means of the triplet loss.
We can confirm this by analyzing the TSNE plot of the em-
beddings produced by gθ as done in Figure 3 for the CIFAR10
data split. Of course, we observe an overlap region where dis-
crimination between knowns and unknowns can prove chal-
lenging, but by representing each embedding cluster by its
respective prototype, we are able to achieve better separation
leading to a more favorable AUROC performance.

We now evaluate the performance of Cas-DC against
all other compared methods from a CCR standpoint. Ta-
ble 2 reports the CCR at 95% TPR for all methods ex-
cept Counter-Factual Images. We do not report results for

Fig. 3: CIFAR10 TSNE plot of the embedding space.

Counter-Factual images due to the inherent nature of using a
”K + 1” classifier (i.e., the ”K + 1” classifier is not depen-
dent on known/unknown discrimination as course distinction
is based on discriminator scores and fine distinction amongst
the ”K + 1” classes is based on separate classifier scores).
We overall observe that Cas-DC is mostly competitive with
all other tested methods, but in particular performs exception-
ally well on Tiny-Imagenet along with outlier exposure. The
clear superiority of Cas-DC and outlier exposure on Tiny-
Imagenet can be attributed to the use of known unknowns
during the training phase as known unknowns allow us to
learn a representative space for all unknowns.

While Cas-DC remains competitive in all other datasets in
regards to CCR at 95% TPR, we question if this is true for all
operating TPRs. To answer this, we plot the CCR against var-
ious TPRs for the CIFAR+10 dataset in Figure 4. From this,
we make multiple interesting observations. Firstly, we can
observe that Cas-DC is, in general, more stable than most of
the compared methods. Again, this can be attributed to hav-



Fig. 4: CIFAR+10 CCR for varying TPR.

Value SVHN CIFAR+50 Tiny-Imagenet

β = 0.1 0.9498 ± 0.017 0.9475 ± 0.002 0.7240 ± 0.020
β = 0.2 0.8759 ± 0.015 0.9112 ± 0.016 0.6048 ± 0.004
β = 0.5 0.8476 ± 0.020 0.8977 ± 0.010 0.5945 ± 0.009
β = 0.9 0.5185 ± 0.006 0.8855 ± 0.010 0.5763 ± 0.004
β = 1.0 0.5092 ± 0.002 0.8844 ± 0.001 0.5601 ± 0.015

Table 3: Effect of various β values with respect to AUROC
performance averaged across 3 runs. Above results use a half
of the unknowns as known unknowns.

ing a specialized classifier capable of consistent performance
regardless of the number of known declarations. Secondly,
Figure 4 suggests that at nearly all other operating TPRs, Cas-
DC is in fact superior. This would suggest that Cas-DC is
the superior method in scenarios where higher TPRs can be
waived. We make note of outlier exposure having a steady
correct classification rate regardless of the TPR used. This is
attributed to outlier exposure’s independent nature of assign-
ing an unknown label vs. a known label which can be advan-
tageous in scenarios where a lower, but still strong CCR is
desired.

Lastly, we analyze the impact of the margin of separation
β and number of classes used for known unknowns during
training in Table 3 and Table 4 respectively. We observe that
generally as we increase the margin of separation, we slowly
see a degradation in performance. An increase in the margin
corresponds to an increase in the distance between a positive
sample and a negative sample in the triplet loss. Thus, when
samples become harder to distinguish between positive and
negative, we incur more risk with a higher margin leading to
worse performance.

In regards to the number of samples used for known un-
knowns during training, naturally we expect performance to
increase as we use more unknowns during training. We can
clearly see this behavior in Table 4, but using more unknowns
for training might be unfeasible in certain scenarios. Thus,
we look where performance begins to saturate and arrive as
the conclusion that half of the unknowns suffices for our ex-
perimentation.

Unknown % SVHN CIFAR+50 Tiny-Imagenet

10% 0.8299 ± 0.007 0.8733 ± 0.007 0.5245 ± 0.002
20% 0.8239 ± 0.004 0.9161 ± 0.003 0.6063 ± 0.019
50% 0.9498 ± 0.017 0.9475 ± 0.002 0.7240 ± 0.020
90% 0.9630 ± 0.010 0.9519 ± 0.002 0.7301 ± 0.020

Table 4: Effect of various percentages of total unknowns used
as known unknowns during training in regards to AUROC
performance averaged across 3 runs. Above results use the
best configuration for margin of separation β.

5. CONCLUSION

In this work, we introduce our method Cas-DC for open set
recognition. Cas-DC benefits from having two specialized
functions for known and unknown discrimination as well
as fine class distinction amongst knowns. This allows each
function to be an expert for their respective task allowing for
top tier performance compared to that of traditional open set
recognition methods where a single function is used for both
known/unknown discrimination and fine class distinction.
Additionally, by using a representative set of the unknowns
termed known unknowns, we are able to train an embed-
ding network for distinct separation between knowns and
unknowns in the embedding space allowing for easy discrim-
ination. Our experiments show that we outperform modern
open set recognition methods in not only known/unknown
discrimination, but also correct classification amongst the
knowns. We summarize our conclusions as follows:

• We present Cas-DC, a novel method for open set recog-
nition that decouples the binary discriminator from
known class distinction using a metric learning ap-
proach.

• We show that using a representative set of the un-
knowns, termed known unknowns, during training
yields superior performance for open set recognition.

• We demonstrate that having a specialized function for
each of known/unknown distinction and known class
discrimination yields overall superior performance.
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