

LENSLESS PHASE RETRIEVAL WITH REGULARIZATION BY BLIND NOISE MAP ESTIMATION AND DENOISING

Igor Shevkunov, Mykola Ponomarenko, Jere Heimo,

and Karen Egiazarian

Computational imaging group, Tampere University, Tampere, Finland, e-mail: <u>igor.shevkunov@tuni.fi</u>

Outline

Introduction

- Lensless imaging
- Phase problem and its solution
- Noise in real life setup
- Blind noise map estimation and denoising, PIXPnet
- Developed algorithm
- Results

Lensless imaging

Lensless wave propagation

Lensless wave propagation

Single wavelength 540 nm (green)

Propagation model

The Rayleight-Sommerfeld integral solution in the **Angular spectrum** model is used:

$$\begin{split} u_{s}(x,y) &= \mathcal{F}^{-1} \Big[H(f_{x},f_{y},z) \cdot \mathcal{F} \{ u_{0}(x,y) \} \Big] \\ H(f_{x},f_{y},z) &= \begin{cases} exp \left[i \frac{2\pi}{\lambda} z \sqrt{1 - \lambda^{2} (f_{x}^{2} + f_{y}^{2})} \right], f_{x}^{2} + f_{y}^{2} \leq \frac{1}{\lambda^{2}}, \\ 0 &, \text{ otherwise} \end{cases} \end{split}$$

Where u_o – object wavefront, u_s – propagated object wavefront, \mathcal{F} and \mathcal{F}^{-1} stay for the Fourier and inverse Fourier transforms, z is a propagation distance, f_x and f_y are spatial frequencies, λ – wavelength.

Phase problem and solution

The **phase problem** is the name given to the problem of loss of information concerning the **phase** that occurs when making a physical measurement.

$$u = A(x, y)e^{i\varphi(x, y)}$$

Phase retrieval is the process of algorithmically finding solutions to the phase problem.

T Tampere University

Phase problem and solution

Different registration planes Different wavelengths Different illumination

Typical phase retrieval algorithm

Tampere University Noise in reconstructions

Fig. 1. Phase image with mixed noise characterized by non-stationary spectrum, different levels, and spatial distributions. Histograms demonstrate these distributions from middle and border locations: top and bottom, respectively. From the right, the 3D plot is 8×8 DCT spectrum of the noise for the central part of the phase image. Blue and green rectangles on the image outline regions for reconstruction quality estimation.

Single shot phase retrieval

*Y. Mäkinen, L. Azzari and A. Foi, "Collaborative Filtering of Correlated Noise: Exact Transform-Domain Variance for Improved Shrinkage and Patch Matching," in IEEE Transactions on Image Processing, vol. 29, pp. 8339-8354, 2020

Solution for noise estimation

Table 1. Suppression of noise with Cauchy distribution, Tam-pere17 image set, PSNR, dB

M Ponomarenko, O Miroshnichenko, V Lukin, K Egiazarian , "Blind estimation of noise level based on pixels values prediction" in Proc. IS&T Int'l. Symp. on Electronic Imaging: Computational Imaging, 2022, pp 152-1 - 152-5

Fig. 4. Prediction errors for pixels recovering by different methods

M Ponomarenko, O Miroshnichenko, V Lukin, K Egiazarian, "Blind estimation of noise level based on pixels values prediction" in Proc. IS&T Int'l. Symp. on Electronic Imaging: Computational Imaging, 2022, pp 152-1 - 152-5

Proposed algorithm

Proposed algorithm

Fig. 2. Simplified flow chart of the proposed denoising. Follow arrows from left to right: from noisy image to denoised one.

Results

Fig. 3. Visual comparison: (a) noisy amplitude, (b) amplitude denoised by previous algorithm, (c) amplitude denoised by the proposed method, (d) noisy phase, (e) phase denoised by previous algorithm, (f) phase denoised by proposed method

Results

Fig. 3. Visual comparison: (a) noisy amplitude, (b) amplitude denoised by previous algorithm, (c) amplitude denoised by the proposed method, (d) noisy phase, (e) phase denoised by previous algorithm, (f) phase denoised by proposed method

Region	Noisy phase	Previous	Proposed
		denoising	denoising
first	110.8	106.5	66.3
second	99.0	69.2	51.4
both	104.9	87.8	59.3

Table 3. RMSE of height map estimation from the phase reconstructions, nm

(a) Algal Cel

Physical experiments with dynamic object (moving single-celled eukaryote)

Filtered phase new

Previous approach phase

P. Kocsis, I. Shevkunov, V.Katkovnik, H.Rekola, and K. Egiazarian, Opt. Express 29, 43662-43678 (2021)

Conclusions

- New approach for real life noise suppression with heavy noise tails
- > Lensless imaging is enhanced significantly in:
 - achieving more effective noise suppression
 - 40% enlarging field of view
 - >26% increase in accuracy of the height estimation

PROFI 6:TAU Imaging Research Platform

Thank you for your attention!

Questions and collaboration: Igor.Shevkunov@tuni.fi