

ON THE DETECTION OF IMAGES GENERATED FROM TEXT

2024.10.29

Authors: Yuqing Yang

Charuka Moremada

Nikolaos Deligiannis

Presenter: Yuqing Yang

(yuqing.yang @vub.be)

CONTENT

- Motivation & Related Work
- Proposed Method
- Experiments & Results
- Conclusion

Proposed Method

Experiments & Results

Conclusion

MOTIVATION

Advanced Generative Model

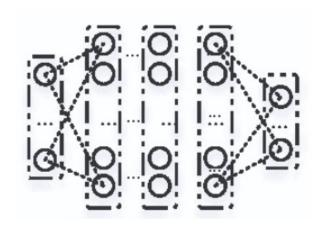
- Text-to-Image generation models
- Stable Diffusion (SD), Latent Diffusion (LD), GLIDE, and DALL·E

Large Scale Dataset

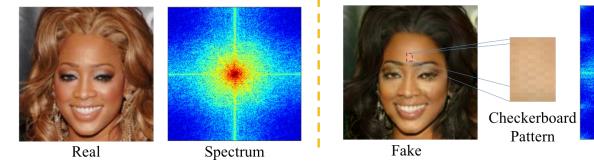
- Images > corresponding prompts
- Extensive datasets

'A street sign that reads "Latent Diffusion" '

Proposed Method


Experiments & Results

Conclusion


RELATED WORK

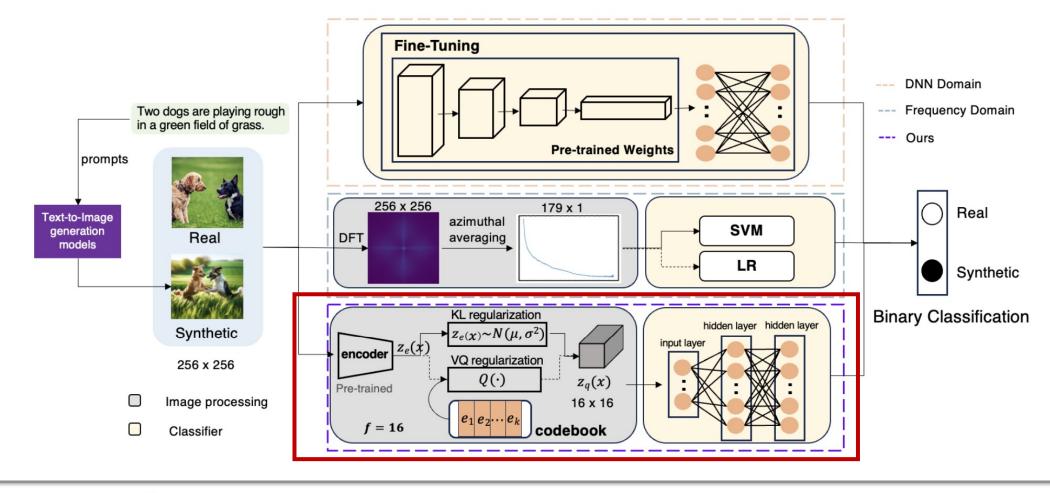
Synthetic Image Detection Method

- Deep Feature Methods
- Frequency Features Methods

DNN Classifier

Frequency Analysis

Spectrum


Proposed Method

Experiments & & Results

Conclusion

PROPOSED METHOD

Latent Space Features

Proposed Method

Experiments & Results

Conclusion

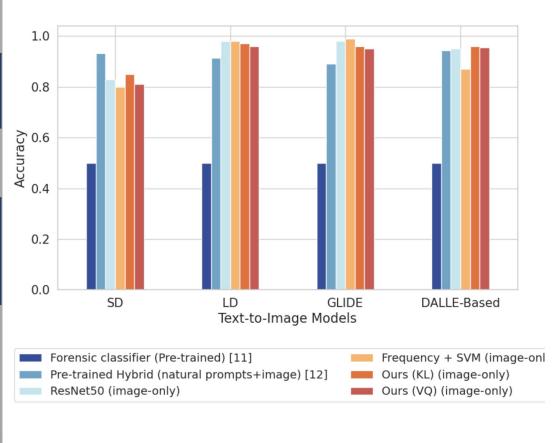
EXPERIMENTAL SETTINGS

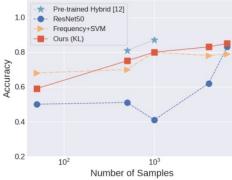
Used Datasets

Real dataset	# of samples	Generative model	# of samples	Generated image size				
MSCOCO		SD [6]	2000	512 × 512				
	8000	LD [6]	2000	256×256				
	8000	GLIDE [5]	2000	256×256				
		DM [7]	2000	256×256				
Flickr30k		SD [6]	2000	512×512				
	8000	LD [6]	2000	256×256				
	8000	GLIDE [5]	2000	256×256				
		DM [7]	2000	256×256				
Total	Real san	mples: 16000	Synthetic samples:16000					

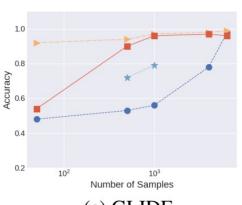
Used Classifiers

Classifier	input size	# param.	MACs				
Logistic Regression	179×1	180	180				
SVM	179×1	$N_{sv}+1$	$N_{sv} \times 179$				
ResNet50	256×256	25.56M	5.40G				
VGG16	256×256	138.36M	20.24G				
Hybrid [12]	512×1	0.59M	0.60M				
Ours	16×16	0.09M	1.13M				

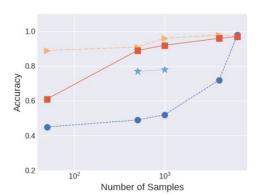

Proposed Method

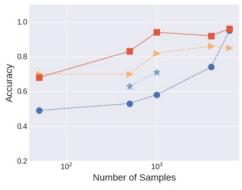

Experiments & Results

Conclusion


RESULTS

Detection Performance




(a) Stable Diffusion (SD)

(c) GLIDE

(b) Latent Diffusion (LD)

(d) DALL·E-MINI (DM)

Proposed Method

Experiments & Results

Conclusion

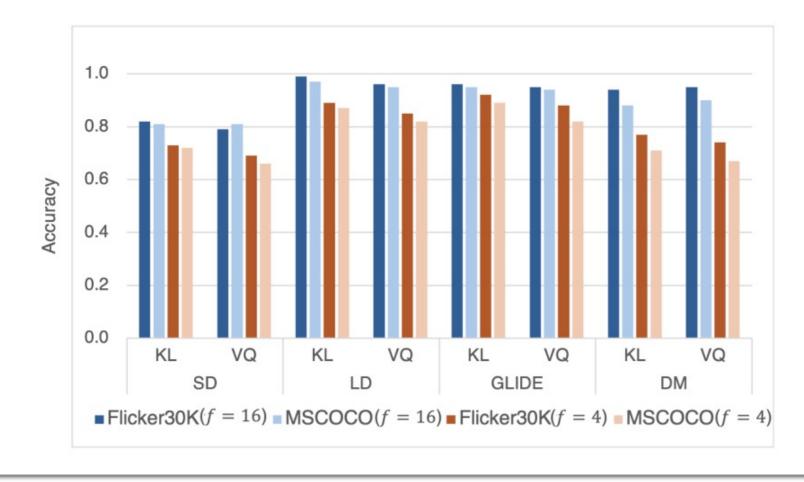
RESULTS

Perturbation Test

Training Dataset	De	Freq	uency F	eatures	Method		Latent Space Features Method								
	Classifier	Pertubation Methods				Classifier	Pe	rtubatio	n Metho	ods	Regularization	Pertubation Methods			
	Classifier	GB	GN	MB	SnP	Classifier	GB	GN	MB	SnP	Regularization	GB	GN	MB	SnP
SD	ResNet50	7.5	6.3	9.0	7.4	LR	36.5	34.9	22.2	28.1	KL	13.4	39.4	8.1	11.1
	VGG16	3.9	5.1	6.3	5.0	SVM	23.8	33.5	32.4	16.8	VQ	<u>2.2</u>	<u>3.4</u>	<u>2.0</u>	$\underline{0.8}$
LD	ResNet50	16.5	16.7	15.9	14.6	LR	53.8	48.1	46.3	31.8	KL	6.7	17.6	8.2	19.3
	VGG16	18.6	17.2	22.2	12.6	SVM	47.7	42.6	16.2	37.3	VQ	<u>4.4</u>	<u>10.0</u>	4.9	16.25
GLIDE	ResNet50	21.8	20.7	19.5	16.4	LR	44.5	49.2	14.4	47.6	KL	36.8	46.1	34.5	40.6
	VGG16	21.5	<u>18.9</u>	21.4	<u>14.9</u>	SVM	43.0	49.2	<u>12.0</u>	46.8	VQ	<u>16.8</u>	39.8	21.8	30.5
DM	ResNet50	18.1	17.2	19.6	9.4	LR	72.2	41.3	39.2	32.5	KL	6.4	1.9	12.4	11.9
	VGG16	11.3	12.2	16.1	<u>2.1</u>	SVM	34.3	38.4	42.9	30.3	VQ	<u>3.3</u>	<u>0.3</u>	<u>7.1</u>	9.2

Generalization Performance

	Deep Features Method					Fre	quency	Feature	s Method		Latent Space Features Method					
Training Dataset	Classifier	Test Datasets			Classifier		Test 1	Datasets		Deculorization	Test Datasets					
	Classifier	SD	LD	GLIDE	DM	Classifier	SD	LD	GLIDE	DM	Regularization	SD	LD	GLIDE	DM	
SD	ResNet50	-	87.5	79.4	77.4	LR	-	87.9	78.4	78.1	KL	-	89.4	77.8	76.4	
SD	VGG16	-	90.3	73.9	75.8	SVM	-	73.8	89.7	79.2	VQ	-	74.5	82.4	77.5	
LD	ResNet50	53.4	-	92.4	85.2	LR	58.2	-	95.4	63.8	KL	57.4	-	85.4	65.4	
	VGG16	62.8	-	84.5	71.5	SVM	54.8	-	99.2	57.0	VQ	60.8	-	74.2	63.5	
GLIDE	ResNet50	51.5	86.6	-	80.0	LR	49.8	86.8	-	54.8	KL	54.8	91.4	-	62.8	
GLIDE	VGG16	53.7	84.8	-	66.5	SVM	48.6	86.9	-	54.1	VQ	55.6	82.4	-	59.2	
DM	ResNet50	58.4	96.4	95.4	-	LR	76.6	88.7	79.8	-	KL	56.4	94.3		-	
	VGG16	65.3	93.8	91.0	-	SVM	76.8	91.7	82.8	-	VQ	59.2	72.4	64.2		


Latent Representation Size

RESULTS

Proposed Method

Experiments & Results

Conclusion

Proposed Method

Experiments & Results

Conclusion

CONCLUSION

- Compared the performance of several detectors in distinguishing synthetic images generated by various text-to-image generation models from real images.
- A lightweight detector based on latent space features, specifically designed for identifying synthetic images generated using text-to-image generation models.
- When the proposed model is trained on synthetic images generated by the SD method, it demonstrates good generalization properties in terms of detecting fake images produced by various text-to-image generation models.

