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1. Introduction

Background: Birds' eye-view
vision systems provide intuitive
understanding of surrounding
objects for driver's assistance.

BEV vision system
Goal: To develop NeRF models generalizable to

test instances with enhanced expressivity by part-
based expert modules.

2. Existing Method

* CodeNeRFyonbong+ iccv2021; Models multiple
objects for generalization by conditioning on
learnable latent codes.
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* Switch-NeRF 7 enying+ icira023) d€COMpoOses single
scene using an input-based gating network and
separate sub-models to enhance expressivity.
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= Combine two methods may achieve our goal.

3. Proposed Method

* Gumbel-NeRF (GN): conditional NeRF with gate-
free, density-based selection of part-aware sub-
models.

Expert-Specific Codes:
Encode properties of a part that
ties with particular expert.

Part-Based Experts:
Learns to decompose scene into
semantic parts (e.g., wheels).
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Gumbel noise

Part-based experts
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Gate-free Density-Based Selection:
Avoids gating bottleneck by exploiting more info from experts.

ot 7: Temperature
0 = Ipax (? + gi>' where g: Gumbel noise

Rival-to-Expert Training:
By proper noising with scheduled 7, Experts compete until one stands
out and gradually becomes an expert.
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One-shot test-time optimization:
Optimizes z to adapt to novel cars with as few as one input image.

» Baseline: "Coded Switch-NeRF”, a naive model
that combines CodeNeRF and Switch-NeRF.

4. Evaluation

Exp-1: Synthesized BEV Image Quality on SRN Benchmark

Exp-2: Decomposition

+ Methods: CodeNeRF (CN), Coded Switch-NeRF (CSN), Gumbel-NeRF (GN). * Both are consistent across objects.
* Results: Gumbel-NeRF outperforms on several image quality metrics. ¢ Gumbel-NeRF utilize experts more evenly.
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