

Gumbel-NeRF: Representing Unseen Objects as Part-Compositional Neural Radiance Fields

C. Hsu¹, Y. Sekikawa², S. Ikehata¹, R. Kawakami¹, I. Sato^{1,2} ¹Institute of Science Tokyo, Japan; ²Denso IT Laboratory, Inc., Japan

1. Introduction

Background: Birds' eye-view vision systems provide intuitive understanding of surrounding objects for driver's assistance.

BEV vision system

Goal: To develop NeRF models **generalizable to test instances** with enhanced expressivity by **partbased expert modules**.

2. Existing Method

CodeNeRF_[Wonbong+,ICCV2021] models multiple objects for **generalization** by conditioning on learnable latent codes.

 Switch-NeRF_[Zhenxing+,ICLR2023] decomposes single scene using an input-based gating network and separate sub-models to enhance expressivity.

⇒ Combine two methods may achieve our goal.

3. Proposed Method

 Gumbel-NeRF (GN): conditional NeRF with gatefree, density-based selection of part-aware submodels.

Gate-free Density-Based Selection:

Avoids gating bottleneck by exploiting more info from experts.

Rival-to-Expert Training:

By proper noising with scheduled τ , Experts compete until one stands out and gradually becomes an expert.

One-shot test-time optimization:

Optimizes z to adapt to novel cars with as few as one input image.

 Baseline: "Coded Switch-NeRF", a naïve model that combines CodeNeRF and Switch-NeRF.

Exp-1: Synthesized BEV Image Quality on SRN Benchmark

- Methods: CodeNeRF (CN), Coded Switch-NeRF (CSN), Gumbel-NeRF (GN).
- Results: Gumbel-NeRF outperforms on several image quality metrics.

Example Input	Method	PSNR	SSIM	LPI VGG	PS Alex	Squeeze	CN	CSN	GN	Ground Truth
	CN	12.84	0.475							
	CSN	12.19	0.546	0.374	0.192	0.210				
	GN	12.61	0.576	0.346	0.177	0.193				
	CN	14.85	0.562					The		
	CSN	14.16	0.625	0.317	0.159	0.171				
	GN	15.20	0.659	0.286	0.141	0.154				
Ú.	CN	18.22	0.665							
	CSN	17.23	0.717	0.256	0.120	0.129				
	GN	18.66	0.749	0.230	0.105	0.116				

Exp-2: Decomposition

- Both are consistent across objects.
- Gumbel-NeRF utilize experts more evenly.

This work is supported by DENSO IT LAB Recognition and Learning Algorithm Collaborative Research Chair (Tokyo Tech.).

4. Evaluation