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ABSTRACT
Recent advancements in artificial intelligence algorithms for
medical imaging show significant potential in automating
the detection of lung infections from chest radiograph scans.
However, current approaches often focus solely on either 2-D
or 3-D scans, failing to leverage the combined advantages of
both modalities. Moreover, conventional slice-based methods
place a manual burden on radiologists for slice selection. To
overcome these challenges, we propose the Recurrent 3-D
Multi-level Vision Transformer (R3DM-ViT) model, capable
of handling multimodal data to enhance diagnostic accuracy.
Our quantitative evaluations demonstrate that R3DM-ViT
surpasses existing methods, achieving an impressive accu-
racy of 96.67%, F1-score of 96.88%, mean average precision
of 96.75%, and mean average recall of 97.02%. This re-
search signifies a significant stride forward in the automated
detection of lung infections through multimodal imaging.

Index Terms— lung infection, R3DM-ViT, CBMIR,
Computer-aided diagnosis, Medical image retrieval.

1. INTRODUCTION

In recent years, the field of Artificial Intelligence (AI) has wit-
nessed unprecedented advancements, opening up new fron-
tiers in various domains, particularly in healthcare diagnos-
tics. These developments have been most notably exemplified
in the evolution of Computer-Aided Diagnosis (CAD) tools,
which reshape the landscape of medical diagnostics. The inte-
gration of AI in healthcare has catalyzed a potential paradigm
shift in how medical professionals approach diagnostic chal-
lenges [1]. Deep learning (DL) methodologies [2, 3] have
significantly streamlined the evaluation and interpretation of
medical data by physicians, thereby solidifying the role of
CAD models as invaluable adjuncts in diagnosing lung infec-
tions. As a result, CAD imaging technologies have gained
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significant credibility in identifying lung infections. The abil-
ity of DL algorithms to extract essential features and gener-
ate predictions based on these features unambiguously shows
their potential in medical image analysis. But even with all of
this success, DL in medical image analysis is still a dynamic
and ever-evolving field.

Chest computed tomography (CT) scans and chest X-ray
(CXR) are the primary imaging modalities in lung infection
screening and detection, favored for their consistent diagnos-
tic manifestations [4]. The evolution of CAD solutions has
seen a significant push towards augmenting the accuracy of
diagnoses and treatment planning using these modalities, par-
ticularly chest radiographs such as CXR [5, 6] and CT scans
[7, 8]. While CXR remains a common diagnostic method, a
growing trend in research favors CT scans for their superior
sensitivity and enhanced visualization capabilities.

A plethora of studies have delved into the detection of
lung abnormalities using the (CXR and CT) imaging modal-
ities, identifying multiple conditions, including the detec-
tion of nodules and tuberculosis and their screening. CXR-
focused studies typically analyze 2-D input data, whereas CT
scan research often involves selecting specific slices from the
entire CT volume [9], a process that, while insightful, de-
mands manual effort and time. The slice-selection approach
also introduces limitations like limited spatial context, lack of
robustness, and potential annotation bias. Conversely, some
studies advocate for full CT volume analysis, citing improved
results over slice-selection methods. Other studies have pro-
posed models using multimodalities to enhance the results
further. A growing amount of research suggests that CT and
X-ray scans be used in tandem to improve the detection of
lung infections [10], given their respective benefits. Never-
theless, a significant gap remains since no study has presented
a model that can simultaneously integrate 2-D CXR and 3-
D CT volume data. This integration is pivotal, considering
the high sensitivity of CT scans and the widespread acces-
sibility of X-ray. By synergizing the strengths of these two
modalities, a more comprehensive and nuanced diagnostic



Fig. 1. Overall workflow diagram of the proposed framework.

perspective can be achieved. To address this, we have pro-
posed a novel model that is intended to support 2-D CXR or
3-D CT volume input or the simultaneous use of both modal-
ities, offering a more thorough and sophisticated analytical
approach to lung infection detection.

Our proposed versatile model is capable of handling data
in various formats, including 2-D CXR images, 3-D CT vol-
umes, and combinations of 2-D CXR images with either 2-D
CT slices or 3-D CT volumes. The model demonstrates profi-
ciency in analyzing two-dimensional CXR images, adeptness
at processing three-dimensional CT volumes, and adaptability
to diverse input formats, allowing for a comprehensive analy-
sis of medical data. The key contribution of this study can be
summarized in the following aspects:

• A Recurrent 3-D Multi-level Vision Transformer (R3DM-
ViT) is proposed based on a Multi-level Vision Trans-
former (M-ViT) and recurrent model by utilizing the
strength of multi-level feature aggregation.

• Our proposed model can jointly analyze 2-D X-ray and
a variable length 3-D CT volumetric data.

• The proposed R3DM-ViT aggregates joint multi-level
spatial and 3-D structural features in case of 3-D CT
data to enhance overall diagnostic performance.

• The proposed framework will be made publicly acces-
sible for further research, development, and educational
purposes.

The subsequent sections of this paper are organized as fol-
lows: Section 2 explains the overall methodology of the pro-

posed framework. Section 3 outlines the experimental con-
figuration and results. Finally, Section 4 encapsulates the dis-
cussion and conclusion of this study.

2. PROPOSED METHOD

The proposed CAD methodology combines the capabilities of
multiscale/multi-level feature fusion with the ability to diag-
nose using a single DL model. The overall architecture of the
proposed model is presented in Fig. 1.

2.1. Workflow Overview

This research aims to create a deep classification model ca-
pable of categorizing multiclass medical data, encompassing
2-D CXR images, 3-D CT slices, and complete 3-D CT vol-
umes. The R3DM-ViT model is intended to process het-
erogeneous radiographic 2-D and 3-D data simultaneously.
Specifically designed to accommodate a variety of radiogra-
phy inputs and take advantage of their complementary infor-
mation for better analysis, this model yields improved results.
The R3DM-ViT model efficiently extracts a range of features,
from low-level f1 to high-level f4, encompassing the intricate
nuances of radiographic data. These features are then fused
and fed to a fully connected layer. Subsequently, the data
is passed through a recurrent block, thereby enhancing the
model’s ability to capture temporal and spatial dependencies
and finally classified.

The development of our model unfolds in two main
phases: the training phase and the testing phase. Initially,
we train an Imagenet pre-trained model with the training



dataset, composed of n data samples, each accompanied by
its respective class label, symbolized as ⟨[FT ]

n
x=1, [lT ]

n
x=1⟩.

This step is crucial for the model to exploit and learn the
spatial characteristics inherent in the data. Next, after run-
ning each data sample through our trained model, all training
data samples [FT ]

n
x=1 were transformed into feature vec-

tors [fT ]nx=1. This transformation yields a redefined training
dataset in the feature domain, denoted as ⟨[fT ]nx=1, [lT ]

n
x=1⟩.

The next step involves segregating the training data into 2-
D and 3-D imaging categories, guided by the information
encoded within each class label.

After the training phase, we evaluated the efficacy of our
proposed classification framework using a distinct testing
dataset, denoted as ⟨[FTp

]nx=1, [lTp
]nx=1⟩. In the context of

2-D imagery, the trained model utilizes spatial characteristics
to determine class predictions. For 3-D CT imaging data, the
model enhances its overall effectiveness by tapping into 3-D
anatomical dependencies, thereby achieving an increase in
performance. Initially, the model processes each of the n con-
secutive slices (F1,F2, ...,Fn) in the sequence, transform-
ing them into corresponding feature vectors (f1, f2, ..., fn).
These feature vectors are then parallel processed, enabling
the model to harness additional 3-D anatomical information
for more accurate class predictions.

2.2. Multi-Level ViT Model Structure and Workflow

Using a pure transformer architecture for image classifica-
tion, the Vision Transformer (ViT) model presents a novel
method for computer vision [11]. ViT processes image patch
sequences directly, marking a significant departure from
conventional Convolutional Neural Networks (CNNs). Addi-
tionally, transformer-based models are capable of capturing
global features by leveraging long-range dependencies, un-
like CNNs that prioritize localized features alone. Further,
studies have shown that ViTs have a larger receptive field
even at the early stages compared to CNNs [12]. The pro-
posed model’s workflow comprises a series of steps: patch
embedding, transformer encoding, and multi-level feature
fusion, culminating in the formation of a classification head.

ViT’s patch embedding block works by splitting the input
image into a series of N non-overlapping patches, thereby
transforming the image into a patch sequence. After that,
each patch is linearly embedded into a feature vector with
embedding dimension d. Positional encodings are added to
account for the spatial information of these patches. The
sequence of patch embeddings that is produced is used as
the input for the transformer layers that follow, allowing
the ViT model to capture dependencies and global relation-
ships among various patches. This method is consistent
with the self-attention mechanism built into transformers
because it gives the transformer a systematic way to exam-
ine the image’s content sequentially. This block transforms
the input tensor Fk ∈ Rwk×hk×dk into the output tensor

Fl ∈ Rwk×hk×dk and Fl ∈ Rwk/2×hk/2×2dk .
In the ViT model, the transformer encoder block is a fun-

damental component that is instrumental in capturing and pro-
cessing information from image patches. The transformer en-
coder Block in ViT utilizes self-attention to identify both local
and global dependencies between image patches using multi-
ple attention heads. Notably, the multi-headed self-attention
composed of k self-attention blocks employs the Scaled dot-
product attention as described in [11]. This method, repre-
sented in (1), processes the input by dividing it into queries
Q, keys K, and values V .

SelfAttention(Q,K, V ) = softmax

(
QKT√

dq

)
V (1)

where Q,K, V ∈ R(1+N)×dq and dq = d/k This approach
allows the model to focus on different aspects of the input
image, capturing intricate patterns crucial for comprehensive
image analysis.

A feed-forward neural network adds non-linearity to this
process, enhancing the model’s capability to identify complex
patterns. Residual connections and normalization layers inte-
grated into the block ensure the model’s stability. By stacking
these blocks, the ViT model captures hierarchical informa-
tion and allows for the iterative refinement of features. The
R3DM-ViT model innovatively incorporates the concept of
multi-level feature fusion, combining the overall impact of the
contributions of the multiscale low-, intermediate-, and high-
level semantic features (i.e., f1–f4) in the final classification
decision.

2.3. Recurrent Model Structure and Workflow

When dealing with 3-D imaging data that is composed of n
consecutive slices (F1,F2, ...Fn), the suggested model an-
alyzes each input slice one after the other and produces a
collection of n feature vectors (f1, f1, ...fn) of size 1 × 1 ×
256 × n. This recurrent model uses Long Short-Term Mem-
ory (LSTM) to process these feature vectors further and per-
form class prediction by utilizing additional 3-D anatomical
characteristics. An LSTM layer receives a series of n feature
vectors (f1, f1, ...fn) from a sequence input layer first. After
processing through a sequence of n LSTM cells, the LSTM
layer takes advantage of extra 3-D anatomical dependencies
among these feature vectors to produce a single feature vec-
tor, hn, of size 1 × 1 × 1200. The output feature vector hn

is further enhanced by another fully connected layer to ex-
tract more discriminative patterns. It includes both 2-D spa-
tial and 3-D anatomical information of the 3-D imaging data
(i.e., (f1, f1, ...fn)). Finally, using the final output feature vec-
tor hn, a single class label is predicted.



Table 1. Performance comparison of the proposed model vs
the baseline model using (2-D CXR + 2-D CT) data ([%]).

Methods ACC F1 mAP mAR
ViT 93.28 92.99 92.97 93.02
M-ViT 94.04 93.86 93.89 93.84
R3DM-ViT (BiLSTM) 95.04 94.88 94.92 94.83

Table 2. Performance comparison of the proposed model vs
the baseline model using (2-D CXR + 3-D CT) data ([%]).

Methods ACC F1 mAP mAR
ViT (BiLSTM) 95.66 95.71 95.56 95.85
R3DM-ViT (BiLSTM) 96.67 96.88 96.75 97.02

2.4. Multistage Training Loss

We achieve optimal convergence of our proposed classifica-
tion framework by subsequently training the M-ViT and re-
current models. Using a cross-entropy (CE) loss function
[13], the ViT was initially trained to exploit and learn the
spatial characteristics from the complete training dataset, re-
ferred to as [FT ]

n
x=1, [lT ]

n
x=1. Subsequently, each data sam-

ple was processed by our M-ViT, resulting in the training
(designated as [fT ]nx=1, [lT ]

n
x=1) and validation (denoted as

[fV ]mx=1, [lV ]
m
x=1) feature vectors from the datasets. Then,

using the same CE loss function, the recurrent model was
trained to learn the 3-D anatomical dependencies in the case
of 3-D imaging data.

3. RESULTS AND ANALYSIS

3.1. Dataset and Experimental Setup

To conduct a comprehensive quantitative analysis of the pro-
posed approach, six publicly accessible datasets containing
both X-ray and CT scans were utilized as used in [5]. These
datasets were categorized into two primary classes based on
their ground truth labeling: infectious and non-infectious.
This classification provided us with a substantial volume of
diverse radiographic data from CT and CXR sources. Dur-
ing the data preprocessing stage, each image was resized to
224 × 224, aligning with the fixed dimension of the input
layer in our proposed network. The modeling and simulation
were conducted using MATLAB R2019a, with an in-built
deep learning toolkit. All simulations were run on a desktop
computer equipped with an Intel Core i7 CPU, 16 GB RAM,
an NVIDIA GeForce GPU (GTX 1070), and operating on
Windows 10.

3.2. Testing Results

Our proposed framework discerns infections by leveraging
both spatial and 3-D structural information extracted from CT

Fig. 2. Validation results of the proposed model with respect
to different sizes of windows to find the optimal window size.

Table 3. Performance comparison of the proposed model
with different RNNs using (2-D CXR + 3-D CT) data ([%]).

Methods ACC F1 mAP mAR
R3DM-ViT (LSTM) 90.07 91.86 92.42 91.38
R3DM-ViT (GRU) 93.67 93.58 94.54 92.72
R3DM-ViT (GRU+BiLSTM) 96.30 96.45 96.40 96.50
R3DM-ViT (BiLSTM) 96.67 96.88 96.75 97.02

scan volumes. A key factor in optimizing the system’s per-
formance is determining the ideal window size, which refers
to the number of slices included in each scan segment. This
window size is crucial because a narrow window may lead
to a loss of structural information, adversely affecting perfor-
mance, while an excessively large window could unnecessar-
ily prolong processing times without significant improvement
in results.

To find the optimal window size, we conducted a com-
prehensive assessment of the model’s validation performance
across a spectrum of 30 different window sizes, ranging from
1 to 30. This evaluation was illustrated in Fig. 2, where we
analyzed the model’s performance in terms of various met-
rics, including accuracy (ACC), F1-score (F1), mean Average
Precision (mAP), and mean Average Recall (mAR). The re-
sults indicated that a window size of 25 (denoted as w = 15)
achieved the best validation performance across all metrics,
as highlighted by the dotted vertical line in Fig. 2.

The model’s effectiveness was assessed using the testing
dataset, as outlined in Table 1. Our newly introduced R3DM-
ViT model, which features a recurrent module, demonstrates
superior performance over the first M-ViT and baseline ViT
models. The R3DM-ViT model shows average improvements
of 1.76%, 1.89%, 1.95%, and 1.81% in ACC, F1, mAP, and
mAR, respectively, for 2-D data when compared to the base-



Fig. 3. Visualization of predicted outputs of the proposed network.

line ViT model. The quantitative comparison between the
baseline ViT model and the proposed R3DM-ViT model, as
summarized in Table 1, indicates a significant enhancement
in performance.

When analyzing both 2-D CXR and 3-D CT scans to-
gether, our proposed model notably outperforms the baseline
ViT with the Bidirectional Long Short-Term Memory (BiL-
STM) model, as reported in Table 2. This improvement is ev-
ident in the substantial average increases across key metrics:
1.01% in ACC, 1.17% in F1, 1.19% in mAP, and 1.17% in
mAR. These results not only demonstrate the model’s versa-
tility in handling multimodal data but also affirm its consistent
superiority across various evaluation metrics.

Furthermore, a comparison of the results in Tables 1 and
2 reveals that the inclusion of 3-D CT scans significantly
enhances the model’s performance. This addition improves
the diagnostic capabilities of the model, underscoring its ef-
fectiveness in utilizing multimodal data for more accurate
medical image analysis. The observed improvements validate
the model’s capacity to integrate complementary information
from different imaging modalities, emphasizing the benefits

Table 4. Performance comparison of the proposed model
with different RNNs using (2-D CXR + 3-D CT) data ([%]).

Study ACC F1 mAP mAR
Khan et al. [14] 92.60 92.77 93.02 92.53
Minaee et al. [15] 88.77 88.77 88.8 88.75
Brunese et al. [16] 92.64 92.74 92.9 92.59
Ardakani et al. [17] 92.64 92.85 93.13 92.57
Martı́nez et al. [18] 92.68 92.77 92.91 92.63
Jaiswal et al. [19] 91.01 91.09 91.23 90.96
Asnaoui et al. [20] 93.42 93.5 93.63 93.37
Apostolopoulos et al. [21] 93.07 93.2 93.4 93.01
Farooq et al. [22] 93.69 93.8 93.98 93.63
R3DM-ViT 96.67 96.88 96.75 97.02

of incorporating 3-D CT scans into the analysis workflow.

In addition to these comparisons, we conducted abla-
tive studies to further elucidate the individual contributions
and effectiveness of different components within our pro-
posed model. As demonstrated in Table 3, we conducted a
comprehensive evaluation of our model against various Re-
current Neural Network (RNN) architectures such as LSTM,
Gated Recurrent Unit (GRU), and BiLSTM. This analysis
was crucial in guiding our choice of the BiLSTM architec-
ture. The superior performance of the BiLSTM, evident in the
comparison, underscores its effectiveness within our model
framework.

Furthermore, Table 4 presents a comparative analysis of
our R3DM-ViT model with several state-of-the-art CAD di-
agnostic techniques. The R3DM-ViT model shows average
improvements of 2.98%, 3.08%, 2.77%, and 3.39% in ACC,
F1, mAP, and mAR, respectively, for 2-D X-data in com-
parison with the second-best model [22]. A rigorous t-test
analysis (p < 0.01) validates the significant performance im-
provement of our model, demonstrating a 99% confidence
level when compared to the second-best model [22]. This
comparison, highlighting the proposed model’s proficiency,
shows it outperforms competitor models across all key quali-
tative performance metrics. Such significant improvement is
achieved by leveraging multi-level feature aggregation, which
is implemented using a ViT model as the foundational base-
line. This approach allows for the integration of information
from various encoder blocks of the network, enhancing the
model’s ability to capture complex patterns and relationships
within the data, thereby leading to superior overall perfor-
mance. These results not only validate the effectiveness of
our model in handling multimodal data but also emphasize its
leading edge in the field of medical image analysis.



4. DISCUSSION AND CONCLUSION

Our study introduces a robust framework capable of pro-
cessing 2-D CXR and 3-D CT scan data, both individually
and in unison. By adopting a multimodal approach, this
framework overcomes the limitations inherent in conven-
tional single-modality diagnostic techniques, laying a more
comprehensive groundwork for diagnostic decision-making.
Further, the qualitative analysis of our framework utilizing
Class Activation Maps (CAM) demonstrates its proficiency
in localizing areas of interest within the radiographic images,
which is critical for accurate diagnosis. Fig. 3 illustrates the
CAM outputs for both positive and negative cases, using 2-D
CXR and 3-D CT scan data. In the positive case scenario, the
CAM output highlights infectious regions, with a high proba-
bility of positive diagnosis at 97.4% for 2-D CXR and 98.2%
for 3-D CT scan data. This visualization aligns with the
clinical findings, showcasing the model’s ability to pinpoint
precise locations relevant to the diagnosed condition.

In conclusion, our framework significantly enhances ra-
diographic image analysis for infectious disease diagnosis
by integrating 2-D and 3-D data, providing a more com-
plete analysis than traditional single-modality methods. This
comprehensive approach improves diagnostic precision and
furthers the development of AI tools that can integrate into
clinical workflows, ultimately supporting healthcare profes-
sionals in delivering accurate diagnoses.
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