
STRENGTHENING DEEP LEARNING MODEL FOR ROBUST SCREENING OF 
VOLUMETRIC CHEST RADIOGRAPHIC SCANS 

��ℎ����� ������, ������ �������, ��ℎ� �����, ��������� ������� �������ℎ��, and 
������� ����ℎ�� 

1 C2PS and KUCARS, Department of Electrical Engineering and Computer Science, Khalifa University, 
UAE 

2 Department of Electrical, Computer and Biomedical Engineering, Abu Dhabi University, UAE 

ABSTRACT 

The emerging deep learning algorithms have shown 
significant potential in the development of efficient computer-
aided diagnosis tools for automated detection of lung 
infections using chest radiographs. However, many existing 
methods are slice-based and require manual selection of 
appropriate slices from the entire CT scan, which is tedious 
and requires expert radiologists. To overcome these 
limitations, we propose a recurrent 3D Inception network 
(R3DI-Net) that sequentially exploits spatial and 3D 
structural features of the entire CT scan, ultimately leading to 
improved diagnostic performance. Additionally, the proposed 
method flexibly handles input CT scans with a variable 
number of slices without incurring performance degradation. 
A quantitative evaluation of R3DI-Net was made using a 
combined collection of three publicly accessible datasets 
containing a sufficient number of data samples. Our method 
outperforms various existing methods by achieving 
remarkable performances of 98.39%, 98.36%, 98.1%, and 
98.64% in terms of accuracy, F1-score, sensitivity, and 
average precision, respectively. 

Index Terms—R3DI-Net, computer-aided diagnosis, lung 
infection, radiology. 

1. INTRODUCTION 
The recent breakthrough in the field of artificial 

intelligence (AI) methods has had remarkable success in 
developing efficient computer-aided diagnosis (CAD) tools in 
the medical field [1–4]. Such CAD methods employed a new 
class of AI methods, known as “deep learning” (DL) 
algorithms such as neural networks to aid in the diagnosis of 
different medical conditions using medical imaging data 
[5,6]. Deep learning algorithms have shown a great potential 
in this area by learning to extract important features from 
medical imaging data and making predictions based on those 
features [7]. Despite its success, deep learning in medical 
image analysis is still a rapidly evolving field with ongoing 
research and development intended to improve its 
performance and generalizability. 

Numerous CAD solutions have been proposed for lung 
infection analysis to improve the accuracy of diagnosis and 
treatment planning using chest radiographs like computed 

tomography (CT) and X-ray scans [8]. These methods can 
recognize patterns in the CT scan indicative of specific 
diseases, such as changes in lung tissue density or fluid in the 
lungs. However, an accurate diagnostic decision for these 
methods depends on selecting appropriate slices from the 
whole CT volume resulting in manual effort and time. In 
addition, slice-based CAD methods have some limitations in 
lung CT data analysis: 1) Limited spatial context: Only a 
single slice of the CT scan is explored at a time, which can 
result in a surplus of spatial context. This can make it difficult 
for the model to precisely recognize lesions or structures 
spread across multiple slices [9]. 2) Lack of robustness: They 
are sensitive to the choice of slice orientation and thickness 
and may cause performance degradation when the slices are 
not representative of the original structures [10]. 3) 
Annotation bias: These methods may be biased towards the 
annotations provided during training, as the model only sees 
the slices that were annotated. This can affect the 
generalizability of the model to new cases where the 
annotated slices may not be representative of the complete CT 
scan [11]. In contrast, volumetric data analysis methods 
consider the whole scan and have the advantage of providing 
a detailed view of the anatomy and can be more robust and 
accurate in detecting lesion regions [12]. 

 
Fig. 1. Overall architecture of the proposed recurrent 3D Inception 
network (R3DI-Net). comprising two main building blocks: spatial 
module (SM) and recurrent module (RM). 

To overcome the limitations of traditional slice-based 
methods, a new sequence-based CAD model (Fig. 1) is 
proposed for effective screening of lung infections utilizing 
the complete CT volume of varying lengths. This study 
presents the following key contributions: 
- A sequence-based recurrent 3D Inception network (R3DI-

Net) is proposed that leverages the power of the inception 



  

module, followed by the recurrent module, to extract multi-
scale spatial and 3D structural features, respectively. 

- The network design can handle a variable-length CT volume 
as input and employs sequential training to achieve optimal 
convergence, utilizing transfer learning to analyze 
volumetric data. 

- The proposed R3DI-Net will be made publicly accessible 
for further research, development, and educational 
purposes. 

2. PROPOSED METHOD 

2.1 Network Structure 
The proposed R3DI-Net consists of two sub-networks, 

referred to as the spatial module and the recurrent module. 
The following subsections provide a comprehensive overview 
of each sub-network in detail. 
2.1.1. Spatial Module: The spatial module takes advantage of 
the abilities of inception blocks [13] to analyze both the 
spatial and channel-wise information at various scales 
contained in each input CT slice. The design mainly 
comprises three key building blocks known as inception 
modules A, B, and C, as well as some additional 
convolutional, average pooling, and max pooling layers, as 
illustrated in Fig. 1. Module A is used to extract information 
from the input image at multiple scales. It consists of multiple 
parallel branches, each with a different filter size, that extract 
information from different parts of the image. The outputs 
from these branches are then concatenated together to form a 
multi-scale representation of the input image. Module B is 
similar to Inception A but also includes a pooling layer to 
reduce the spatial resolution of the input tensor. This block 
helps the network extract more abstract and high-level 
features while retaining the necessary information for 
accurate object recognition. Module C is used to get the final 
prediction and typically consists of multiple parallel branches, 
each with a different filter size, that extract information from 
different parts of the image. The outputs from these branches 
are then concatenated and passed through a few fully 
connected layers to make the final prediction. Additionally, 
there is a grid size reduction block to decrease the spatial 
dimension of the input tensor from the previous stage. The 
purpose of reducing the grid size is to reduce the 
computational complexity of the network, as well as to 
provide a form of spatial invariance, which means that the 
network can activate the key regions (i.e., lesion patterns) 
regardless of their position in the image. Mathematically, the 
input tensor �� with dimensions �� × ℎ� × �� is subjected to 
the following layer-wise transformations after passing 
through these building blocks: 
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The functions ��(·), ��(·), ��(·), and ���(·) correspond to 
the inception modules A, B, C, and grid size reduction block, 

respectively, represented as transfer functions. The operation 
ℎ��,…,�� denotes the convolutional layers applied sequentially 
with filter sizes ranging from �1 to ��. The * and ' symbols 
indicate sequential and parallel separable convolution 
operations, respectively. The functions ��(·)  and ��(·) 
denote average-pooling and max-pooling operations with a 
filter size of � , respectively. Finally, the dot operation (·) 
indicates depth-wise feature concatenation. 
2.1.2. Recurrent Module: The recurrent module employs a 
modified recurrent neural network (RNN) termed the long 
short-term memory (LSTM) model to explore deeper into the 
3D structural information [9,14]. The LSTM model consists 
of a series of cascaded LSTM cells [14], including a memory 
cell unit and a group of three gate units: input, forget, and 
output. It is suitable for processing sequences of 2D CT slices 
of both fixed and variable lengths and is designed to capture 
3D structural dependencies among the slices. Integrating a 
cascade of spatial and recurrent modules enables the 
implementation of transfer learning for volumetric data 
without affecting the total number of training parameters. The 
advantages of LSTM were incorporated to develop the R3DI-
Net for efficient screening of volumetric CT data. 

2.2 Network Workflow 
The proposed network comprises three convolutional 

layers followed by a max pooling layer which yields a low-
level semantic feature map of size 73×73×64 from each CT 
slice of size 299×299. Two more convolutional layers are 
added, followed by another max pooling layer to refine the 
input tensor further, resulting in a new feature space of size 
35×35×192. The subsequent stack of inception modules, 
which includes three A modules, four B modules, two C 
modules, and two grid size reduction blocks (as depicted in 
Fig. 1), extracts multilevel semantic information from the 
output tensor of the previous layer in succession. This 
ultimately results in a high-level feature map of size 
8×8×2048. Finally, this high-level feature map is further 
reduced to a feature vector � of size 1×1×2048 by the 8×8 
average-pooling layer. The final output feature vector is a 
multi-scale semantic representation of the input slice. 

The proposed spatial module processes each of the � slices 
(��, ��, … , ��) successively, and outputs a set of �  feature 
vectors (��, ��, … , ��)  of size 1×1×2048×n. These feature 
vectors are then accumulated and processed by the recurrent 
module to extract 3D structural features and make a 
prediction. The accumulated set of �  feature vectors 
( ��, ��, … , ��)  is passed to the LSTM layer through a 
sequence input layer of the recurrent module, which exploits 
the 3D structural dependencies among these feature vectors 
and generates a single feature vector ��  of size 1×1×600. 
Subsequently, a fully connected layer (FC) further analyzes 
��  by mapping it into a low-dimensional feature vector of 
size 1×1×128. Finally, based on the highest probability score, 
the classification module, including FC and softmax 
activation function, yields predicted class labels for the CT 
volume. 



  

2.3 Training Loss  
To optimize the convergence of the R3DI-Net, a sequential 

training approach was utilized that leveraged the power of 
transfer learning in volumetric data analysis. In the first step, 
the first inception module was trained using the training 
dataset 〈[���]���

� , [���]���
� 〉 in order to identify and learn the 

spatial features. Then, each CT slice was processed using the 
trained inception module, resulting in the transformation of 
all training data samples [���]���

�  into feature 
vectors [���]���

� . This generated a new training dataset 
〈[���]���

� , [���]���
� 〉  in the feature domain. The recurrent 

module was trained to recognize the 3D structural 
dependencies from the feature-level training data samples in 
the second stage. The complete two-step loss function of the 
R3DI-Net can be formulated as: 
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where ���  and ���  represent spatial and recurrent modules 
as transfer functions, respectively. The symbols ℒ��(∙) and 
ℒ��(∙) signify cross-entropy loss functions [15] for spatial 
and recurrent modules, respectively. The notations [���]���

�  
and [���]���

�  present training and validation data samples, 
respectively. The training and validation data samples in 
feature space are represented as [���]���

�  and [���]���
� , 

respectively. The actual class label for training and validation 
samples are indicated by [���]���

�  and [���]���
� , respectively. 

3. RESULTS AND ANALYSIS 

3.1 Dataset and Experimental Setup 

A large-scale database was created to evaluate the proposed 
method by merging three chest CT datasets previously used 
in a study [12]. The combined database contains 5471 CT 
samples from 2789 patients. The database was categorized 
into two groups according to ground-truth labels. The 
simulations were carried out using the deep-learning toolbox 
on MATLAB (R2019a) framework on a desktop PC. 
Hyperparameter initialization is done using the default 
parametric settings in the deep-learning toolbox. The 
experimental setup includes five-fold cross-validation, with 
70% of the database for training, 10% for validation, and 20% 
for testing. Finally, the performance of the proposed method 
and other methods were evaluated based on standard 
performance metrics, including average accuracy (ACC), F1-
score (F1), sensitivity (SEN), and average precision (AP) 
[15]. 

3.2 Testing Results (Ablation Studies) 
The R3DI-Net leverages both spatial and 3D structural 

information from a CT scan volume to diagnose whether or 
not the given case is infected. We initially evaluated the 
validation performance of the proposed R3DI-Net using 
various window sizes to determine the optimal slice count. 

The window size (i.e., length of consecutive slices) is a crucial 
factor in the system's performance. A small window size leads 
to a drop in performance due to the loss of structural 
information, while a large window size increases processing 
time without significantly improving performance. Hence, we 
evaluated the validation performance of our R3DI-Net for 20 
different window sizes (ranging from 1 to 20), as depicted in 
Fig. 2. The red box in Fig. 2 shows the highest validation 
performance for all performance metrics (ACC, F1, SEN, and 
AP) for a window size of 15 (� =  15). 

 
Fig. 2. Validation results of the proposed R3DI-Net with respect to 
different sizes of windows to find the optimal window size. 

Table 1. Quantitative performance comparison of R3DI-Net versus 
the baseline Inception-Net, with average results emphasized in bold. 
(Note: “Std: standard deviation” and “unit: %”). 

Model ACC 
(Std) 

F1 
(Std) 

SEN 
(Std) 

AP 
(Std) 

Inception-Net [13] 
(slice-based prediction) 

94.57 
(3.09) 

94.41 
(3.15) 

93.94 
(3.8) 

94.89 
(2.51) 

R3DI-Net 
(slice-based prediction) 

95.03 
(3.91) 

94.86 
(4.03) 

94.42 
(4.62) 

95.31 
(3.41) 

R3DI-Net 
(scan-based prediction) 

98.39 
(1.88) 

98.36 
(1.9) 

98.1 
(2.36) 

98.64 
(1.45) 

Subsequently, the effectiveness of the model was assessed 
based on the testing dataset, as highlighted in Table 1. This 
comparison demonstrates the added benefits of the second-
stage recurrent module in improving the results by 
incorporating structural context across multiple slices. The 
proposed R3DI-Net (which includes a recurrent module) 
outperforms the baseline Inception-Net model with an 
average improvement of 3.82%, 3.95%, 4.16%, and 3.75% in 
ACC, F1, SEN, and AP, respectively. In addition, the R3DI-
Net shows an improvement of 3.36%, 3.5%, 3.68%, and 
3.33% in ACC, F1, SEN, and AP, respectively, for scan-based 
prediction compared to slice-based prediction. A t-test 
analysis revealed that the R3DI-Net (scan-based prediction) 
achieved an average p-value of 0.0001 (� < 0.01) compared 
to the R3DI-Net (slice-based prediction) and the Inception-
Net (slice-based prediction), respectively. The lower p-values 
(� < 0.01)  indicate that the R3DI-Net (scan-based 
prediction) outperforms them significantly with a 99% 
confidence level. The quantitative comparison between the 
proposed R3DI-Net model and the Inception-Net baseline 



  

model for the slice-based prediction is summarized in Table 
1. The proposed model still demonstrates improved 
performance with a slight increase compared to the baseline 
model. 

Table 2. Quantitative performance comparison of R3DI-Net versus 
the baseline DS-Net and DSS-Net, with average results emphasized 
in bold. (Note: “Std: standard deviation” and “unit: %”). 

Model ACC 
(Std) 

F1 
(Std) 

SEN 
(Std) 

AP 
(Std) 

DS-Net [12] 
(slice-based prediction) 

93.31 
(2.94) 

93.1 
(3.02) 

92.49 
(3.60) 

93.72 
(2.44) 

R3DI-Net 
(slice-based prediction) 

95.03 
(3.91) 

94.86 
(4.03) 

94.42 
(4.62) 

95.31 
(3.41) 

DSS-Net [12] 
(scan-based prediction) 

96.58 
(2.79) 

96.53 
(2.77) 

96.01 
(3.54) 

97.07 
(2.00) 

R3DI-Net 
(scan-based prediction) 

98.39 
(1.88) 

98.36 
(1.9) 

98.1 
(2.36) 

98.64 
(1.45) 

We further compared the performance of our R3DI-Net 
model to an existing baseline method [12] using the same 
experimental protocol (as shown in Table 2). The baseline 
method [12] consists of two networks: the Dilated Shuffle 
Subnetwork (DS-Net) and the Dilated Shuffle Sequential 
Network (DSS-Net). DS-Net is designed for slice-based 
predictions, while DSS-Net is responsible for scan-based 
predictions. Our R3DI-Net outperformed the DS-Net [12], 
with average improvement of 1.72%, 1.76%, 1.93%, and 
1.59% in ACC, F1, SEN, and AP, respectively, for slice-based 
prediction. And in terms of scan-based prediction, our final 
R3DI-Net showed improvement of 1.81%, 1.83%, 2.09%, and 
1.57% in ACC, F1, SEN, and AP compared to the DSS-Net 
[12]. 

3.3 Comparison 
Table 3 presents a comparison of the performance of our 

R3DI-Net with different state-of-the-art CAD diagnostic 
methods [16–26]. The R3DI-Net outperforms in terms of 
qualitative performance parameters comparison to all 
competitive models (as shown in Table 3). Additionally, the 
DenseNet201-based method by Jaiswal et al. [26] is second 
best among the other methods [16–25]. However, the R3DI-
Net outperforms DenseNet201 [27] convolutional network 
(used by Jaiswal et al. [26]) with average gains of 4.22%, 
4.33%, 4.64%, and 4.01% in ACC, F1, SEN, and AP, 
respectively. A t-test analysis confirms that the R3DI-Net 
shows significant improvement over the method of Jaiswal et 
al. [26] at a 99% confidence score, with an average p-value of 
0.00003 (� < 0.01). In another study, Martínez et al. [25] 
used the existing pretrained NASNet [28] convolutional 
network to diagnose COVID-19 infections using chest CT 
scans automatically. The NASNet-based method by Martínez 
et al. [25] is ranked third among the other methods [16–24]. 
However, our R3DI-Net shows significantly higher 
quantitative results than the method by Martínez et al. [25], 
with an improvement of 4.71%, 4.87%, 5.28%, and 4.45% in 
ACC, F1, SEN, and AP, respectively. 

Table 3. Performance comparison of R3DI-Net with state-of-the-art 
techniques with average results emphasized in bold (“unit: %”). 

Study ACC F1 SEN AP 
Brunese et al. [16] 89.66 89.54 87.81 91.43 
Farooq et al. [17] 90.30 90.22 88.53 92.17 
Minaee et al. [18] 89.84 89.48 89.06 89.91 
Khan et al. [19] 91.54 91.33 90.47 92.26 
Alsharman et al. [20] 89.73 89.53 88.73 90.4 
Misra et al. [21] 92.96 92.76 92.14 93.41 
Hu et al. [22] 91.65 91.52 90.44 92.69 
Ardakani et al. [23] 90.30 90.26 88.64 92.17 
Apostolopoulos et al. [24] 92.95 92.85 91.94 93.81 
Martínez et al. [25] 93.68 93.49 92.82 94.19 
Jaiswal et al. [26] 94.17 94.03 93.46 94.63 
Proposed (R3DI-Net) 98.39 98.36 98.1 98.64 

4. DISCUSSION AND CONCLUSION 

2D-CNNs typically consider only spatial features from 
each slice to make a diagnostic decision, disregarding the 3D 
structural information resulting in performance issues. In 
contrast, 3D-CNNs consider additional 3D structural features 
from the entire CT scan for a diagnostic decision. The 
approaches with 3D-CNNs have a higher number of training 
parameters that require significant computational resources. 
This work addresses these challenges with a proposed 
sequence-based 3D model for accurate analysis of CT 
volumetric data. The proposed network incorporates multi-
scale spatial features (using the inception module) and 3D 
structural features (using the recurrent module) to achieve 
state-of-the-art results. This network design employs transfer 
learning with minimal increase in training parameters and is 
equipped to handle variable-length sequences for volumetric 
data analysis. Fig. 3 displays examples of correctly classified 
(true-positives and true-negatives) and misclassified (false-
positives and false-negatives) cases, along with prediction 
scores and class activation maps (taken from the second-last 
layer of the inception module). Incorrect predictions may also 
occur due to the presence of small lesion patterns or 
insufficient data annotation. In our future work, we will 
further continue to investigate the effectiveness of 
transformers in analyzing volumetric data. 

 
Fig. 3. Visualization of correctly classified (true-positives and true-
negatives) and misclassified (false-positives and false-negatives) 
cases made by the proposed framework (“PS: Prediction score”). 
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