Unrolled Projected Gradient Algorithm for Stain

Separation in Digital Histopathological Images

A. Sadraoui' A. Laurent-Bellue’> M. Kaaniche'?
A. Benazza-Benyahia* C. Guettier” J.-C. Pesquet’

! Centre for Visual Computing, CentraleSupélec, Université Paris-Saclay, Inria, OPIS, Gif-Sur-Yvette, France
2Department of Pathology, AP-HP. Hopital Bicétre, INSERM U1193, Le Kremlin-Bicétre, France,
3Université Sorbonne Paris Nord, L2TI, UR 3043, Villetaneuse, F-93430, France,

“Université de Carthage, SUP’COM, LR11TICO1, COSIM Lab, Ariana, Tunisia.

October 30th, 2024
Universite Crs Zewia
Sorbonne .S 5
Paris Nord

O ..
E") universite

CentraleSupélec  PARIS-SACLAY



©® General context

® Problem formulation

© Unrolled optimization algorithm
O Results

© Conclusion and Perspectives



[ Jele}

Outline

©® General context



oeo

Introduction

Histopathological images

Staining the tissue of a given organ using a combination of color dyes
® Hematoxylin (H): bluish-purple stain strongly related to the nuclei.
® Fosin (E): red-pink stain that highlights the cytoplasm of the nucleus.

® Saffron (S): yellow stain used to detect connective tissues.

€

Figure 1: ExamAple of HES-stained image.
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® Hematoxylin (H): bluish-purple stain strongly related to the nuclei.
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® Saffron (S): yellow stain used to detect connective tissues.

Figure 1: Example of HES-stained image.

Challenge: Variation in staining protocols

® Digital histopathological images, particularly HES-stained images, suffer
from color variations due to differences in staining protocols, and materials.

® These color variations affect the accuracy of computer-aided systems used
for disease diagnosis, especially in cancer detection.
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Introduction

Histopathological images

Staining the tissue of a given organ using a combination of color dyes
® Hematoxylin (H): bluish-purple stain strongly related to the nuclei.
® Fosin (E): red-pink stain that highlights the cytoplasm of the nucleus.

® Saffron (S): yellow stain used to detect connective tissues.

Figure 1: Example of HES-stained image.

Challenge: Variation in staining protocols

® Digital histopathological images, particularly HES-stained images, suffer
from color variations due to differences in staining protocols, and materials.

® These color variations affect the accuracy of computer-aided systems used
for disease diagnosis, especially in cancer detection.

@ Need for the standardization/normalization of the different stain
appearances to ensure consistent results.
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Solution: Stain separation

(d)

Figure 2: The principle of stain separation: (a) HES-stained image. (b) H-stained image.
(c) E-stained image. (d) S-stained image.
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Figure 2: The principle of stain separation: (a) HES-stained image. (b) H-stained image.
(c) E-stained image. (d) S-stained image.

Contribution
® State-of-the-art methods: SVD, ICA and NMF

® Traditional stain separation methods often require image-specific parameter
tuning, which is set in an empirical manner and computationally expensive.
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Contribution
® State-of-the-art methods: SVD, ICA and NMF

® Traditional stain separation methods often require image-specific parameter
tuning, which is set in an empirical manner and computationally expensive.

@ Goal: design an efficient and robust stain separation method, and enable
supervised learning of the hyperparameters
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Solution: Stain separation

(c) (d)

Figure 2: The principle of stain separation: (a) HES-stained image. (b) H-stained image.
(c) E-stained image. (d) S-stained image.

Contribution
® State-of-the-art methods: SVD, ICA and NMF

® Traditional stain separation methods often require image-specific parameter
tuning, which is set in an empirical manner and computationally expensive.

@ Goal: design an efficient and robust stain separation method, and enable
supervised learning of the hyperparameters
— Main ideas: Projected Gradient algorithm and unrolling paradigm
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® Problem formulation
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Problem formulation

Beer-Lambert law [ ]

I=l- eXp(_WH) Optica]:l)insity V== log <)

vV =WH ey

I € R¥>V: vectorized HES-stained image

Iy: incident light intensity
e V € R3*N: Optical Density (OD) version of /

W € R¥*": stain-color vector matrix (can be experimentally estimated)

e H ¢ R"™NV: stain concentration matrix
® N is the image size

® ;s the number of stains
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Problem formulation

Beer-Lambert law [ ]

I=l- eXp(_WH) Optica]:l)insity V== log <)

vV =WH ey

I € R¥>V: vectorized HES-stained image

Iy: incident light intensity
e V € R3*N: Optical Density (OD) version of /

W € R¥*": stain-color vector matrix (can be experimentally estimated)

e H ¢ R"™NV: stain concentration matrix
® N is the image size

® ;s the number of stains

@ Goal: Estimate H given an observed V and a known W.
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Problem formulation

Equation (1) can be solved by formulating the following optimization problem:

minimize —||V WH ||% 4 R(H)
HeR >N )

subjectto H >0
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Problem formulation

Equation (1) can be solved by formulating the following optimization problem:

minimize f||V WH ||% 4 R(H)
HeR™ @

subjectto H >0

Problem (2) can be rewritten as follows:

minimize f||V WH||% 4+ R(H; A1, My, €) + 40,400 (H) 3)
HER™ — ——

Data fidelity term Regularization term  ponpegativity constraint
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Problem formulation

® The Regularization term R is given by

R(H;)‘17)\275): 7HH||F +)‘ZZZ\/DHT DhHT) +52 (4)

c=1 i=1

quadratlc term
smoothed total variation (STV)

where A\; and )\, are positive regularization parameters, ¢ is the STV parameter
and, D, € RN and D, € R¥*¥ are the vertical and horizontal discrete
gradient operators, respectively.
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Problem formulation

Our minimization problem can be seen as the minimization of two functions g

and f
minimize —||V WH||% + R(H; \i, Ay, € €) + o, oo (H) (5)
HER™N )
g(H;A1,M2,€) f(H)

e f and g are proper lower-semicontinuous convex functions on R"™*V
® ¢ is differentiable with an L-Lipschitzian gradient with respect to H.

® fis a function whose proximity operator reduces to the projection
PIojg 40 x» ONto the nonnegative orthant [0, +oo[™

10/23
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Problem formulation

Our minimization problem can be seen as the minimization of two functions g

and f
minimize —||V WH |2 4+ R(H; M, Mo, e €) + Lo oo (H) ®)
HeR™N )
g(H;A1,M2,€) f(H)

e f and g are proper lower-semicontinuous convex functions on R"™*V
® g is differentiable with an L-Lipschitzian gradient with respect to H.

® fis a function whose proximity operator reduces to the projection
PIojg 40 x» ONto the nonnegative orthant [0, +oo[™

@ Problem (5) can be solved using Projected Gradient Algorithm (PGA),
which is a special case of the proximal gradient algorithms [2].

10/23
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Optimization algorithm

Algorithm 1 Projected Gradient Algorithm (PGA)

Input: Initial point Hy € R™¥, fixed stepsize v € ]0, #[ and number of
iterations K € N*.
fork=0,1,...,K—1do
Hk+1 = pI‘Oj[O’Jroo[rxN (Hk — 'ng(Hk; )\1,)\2, 6))
end for

where L is the Lipschitz constant of the gradient Vg given by

A2

L=|W[;+\ +8—.

11/23
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Optimization algorithm

Algorithm 2 Projected Gradient Algorithm (PGA)

Input: Initial point Hy € R™¥, fixed stepsize v € ]0, #[ and number of
iterations K € N*.
fork=0,1,...,K—1do
Hk+1 = pI‘Oj[O’Jroo[rxN (Hk — 'ng(Hk; )\1,)\2, 6))
end for

where L is the Lipschitz constant of the gradient Vg given by

X
=,

Hyperparameters setting (77, A;, A2, €)

11/23

L=|W|3+ X +8
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© Unrolled optimization algorithm



Unrolled PGA

Deployment of a neural network architecture.

Learning the hyperparameters from a training dataset.
Interpretable and flexible algorithm.

Reducing the required number of iterations (faster convergence).
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Unrolled PGA

One layer L of the Unrolled PGA mirrors one iteration for PGA by

Hiy1 = Projpg 4 oopxn (Hy — %V g(Hi; Ak Aok €k))
= Projjg oopx™ (Hk — W(A(H) + B(H; M k) + C(H; Aog, 1)) (6)

Initial point Hy

Final point Hg 1
L() | et —> Ek' | i —> ACK,1

Hi,—>

N
N
N

e
AH) }—1 + \

p . x _

B(H; A1) }i> > ~><y>—> > > Projjg ey —>Hysn
Ve | +
C(H§)‘2,k;5k)}—T T+

where,

Figure 3: Unrolled PGA architecture.

® A(H)=WT(WH-V)
° B(H; /\17]() = )\l,kH
o C(H: My x,er) =VSTV(H: My i, €1) 14/23



Unrolled PGA

Hyperparameters learning

To obtain the vector of parameters O = [A1x, Aok, €k, Vi) |

tivity, we consider:

, and ensure its posi-

Vk € {0’ K — 1} O = Softplus(\llk), (7

where U, is a vector of parameters learned during the training.

Ty L7 LISt
Sofff’lus SoftPlus SoftPlus
¢ = [A1,0, A2,0,0,70] " Ok = [Ark Aok €y 1] Ok-1 = A k-1, Aok1, €K1, VK1)
Initial point Ho ¢ ¢ ¢ Final point H g1
T, Ly e Ly — sl Lp g 28

Figure 4: Unrolled PGA architecture with parameters learning.
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Unrolled PGA

Loss function

The resulting neural network architecture is trained by minimizing:

1
LO) =5 > L, L(0)), ®)
ce{he,s}
where
® O = (O)o<k<k—1 represents the global set of parameters
® /is a given criterion used to compare the reconstructed image /. associated

to the stain ¢ with its corresponding ground truth IC(GT).
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® Results
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Experimental settings

Our data was acquired at the Kremlin-Bicétre hospital, France.

The unrolled PGA was composed of 20 layers = 80 trainable
parameters.

Our model is implemented in Pytorch, using the ADAM optimizer with an
initial learning rate set to 0.01.

The batch size and number of epochs were set to 5 and 150, respectively.
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Numerical results

Table 1: Stain separation performance.

PSNR _SSIM__ PicAPP
Ruifrok and Johnston [3] | 44.841 0355  2.134
Xu et al. [4] 44315 0369  1.979
Vahadane et al. [5] 42220 0368  1.851
Yang et al. [6] 42755 0355  1.841
PGA 45254 0394 1477
Unrolled PGA - [ 46525 0427 1161

Key observations: PGA and Unrolled PGA vs SOA Methods

® Both PGA and Unrolled PGA demonstrated superior performance

compared to the SOA methods.

® The Unrolled PGA outperformed all methods across all metrics.
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Visual results

Figure 5: Illustration of the separated stain images (3 examples). 1* row: Ground truth.
2" row: Xu et al. [4]. 3 row: Vahadane ef al. [5]. 4" row: Yang et al. [6]. 5" row:
PGA. Last row: unrolled PGA. 20/23
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Conclusion and Perspectives

Conclusion

v

v

Designing an iterative projected gradient algorithm for the stain separation
problem.

Incorporating smooth total variation regularization to improve the quality
of separation.

Unrolling the algorithm into a neural network architecture

The proposed method demonstrated significant objective improvements, in
terms of PSNR, SSIM, and PieAPP, over state-of-the-art methods.

Subjective evaluations showed that our approach produced visually
superior results in stain separation.



Conclusion and Perspectives

Conclusion

v/ Designing an iterative projected gradient algorithm for the stain separation
problem.

v/ Incorporating smooth total variation regularization to improve the quality
of separation.

v/ Unrolling the algorithm into a neural network architecture

v/ The proposed method demonstrated significant objective improvements, in
terms of PSNR, SSIM, and PieAPP, over state-of-the-art methods.

v/ Subjective evaluations showed that our approach produced visually
superior results in stain separation.

Perspectives

» Extending the optimization problem to estimate both the matrices W and H
simultaneously

» Going beyond stain separation to tackle stain normalization as well as other
potential applications
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