Unrolled Projected Gradient Algorithm for Stain Separation in Digital Histopathological Images

A. Sadraoui¹ A. Laurent-Bellue² M. Kaaniche^{1,3} A. Benazza-Benyahia⁴ C. Guettier² J.-C. Pesquet¹

¹Centre for Visual Computing, CentraleSupélec, Université Paris-Saclay, Inria, OPIS, Gif-Sur-Yvette, France ²Department of Pathology, AP-HP. Hôpital Bicêtre, INSERM U1193, Le Kremlin-Bicêtre, France, ³Université Sorbonne Paris Nord, L2TI, UR 3043, Villetaneuse, F-93430, France, ⁴Université de Carthage, SUP'COM, LR11TIC01, COSIM Lab, Ariana, Tunisia.

October 30th, 2024

Outline

- General context
- **2** Problem formulation
- **3** Unrolled optimization algorithm
- 4 Results
- **S** Conclusion and Perspectives

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Outline				

General context

2 Problem formulation

3 Unrolled optimization algorithm

4 Results

6 Conclusion and Perspectives

	General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Introduction	Introduc	tion			

Histopathological images

Staining the tissue of a given organ using a combination of color dyes

- Hematoxylin (H): bluish-purple stain strongly related to the nuclei.
- Eosin (E): red-pink stain that highlights the cytoplasm of the nucleus.
- Saffron (S): yellow stain used to detect connective tissues.

Figure 1: Example of HES-stained image.

	General context O●O	Problem formulation	Unrolled optimization algorithm 00000	Results 0000	Conclusion and Perspectives
Introduction	Introduct	tion			

Histopathological images

Staining the tissue of a given organ using a combination of color dyes

- Hematoxylin (H): bluish-purple stain strongly related to the nuclei.
- Eosin (E): red-pink stain that highlights the cytoplasm of the nucleus.
- Saffron (S): yellow stain used to detect connective tissues.

Figure 1: Example of HES-stained image.

Challenge: Variation in staining protocols

- Digital histopathological images, particularly HES-stained images, suffer from color variations due to differences in staining protocols, and materials.
- These color variations affect the accuracy of computer-aided systems used for disease diagnosis, especially in cancer detection.

General context O●O	Problem formulation	Unrolled optimization algorithm 00000	Results 0000	Conclusion and Perspectives
Introduc	tion			

Histopathological images

Staining the tissue of a given organ using a combination of color dyes

- Hematoxylin (H): bluish-purple stain strongly related to the nuclei.
- Eosin (E): red-pink stain that highlights the cytoplasm of the nucleus.
- Saffron (S): yellow stain used to detect connective tissues.

Figure 1: Example of HES-stained image.

Challenge: Variation in staining protocols

- Digital histopathological images, particularly HES-stained images, suffer from color variations due to differences in staining protocols, and materials.
- These color variations affect the accuracy of computer-aided systems used for disease diagnosis, especially in cancer detection.
- Need for the standardization/normalization of the different stain appearances to ensure consistent results.

(b)

(d)

Figure 2: The principle of stain separation: (a) HES-stained image. (b) H-stained image. (c) E-stained image. (d) S-stained image.

(c)

(b)

(d)

Figure 2: The principle of stain separation: (a) HES-stained image. (b) H-stained image. (c) E-stained image. (d) S-stained image.

(c)

Contribution

- State-of-the-art methods: SVD, ICA and NMF
- Traditional stain separation methods often require image-specific parameter tuning, which is set in an empirical manner and computationally expensive.

(d)

Figure 2: The principle of stain separation: (a) HES-stained image. (b) H-stained image. (c) E-stained image. (d) S-stained image.

(c)

Contribution

- State-of-the-art methods: SVD, ICA and NMF
- Traditional stain separation methods often require image-specific parameter tuning, which is set in an empirical manner and computationally expensive.
- Goal: design an efficient and robust stain separation method, and enable supervised learning of the hyperparameters

(a)

(c)

(d)

Figure 2: The principle of stain separation: (a) HES-stained image. (b) H-stained image. (c) E-stained image. (d) S-stained image.

Contribution

- State-of-the-art methods: SVD, ICA and NMF
- Traditional stain separation methods often require image-specific parameter tuning, which is set in an empirical manner and computationally expensive.

Goal: design an efficient and robust stain separation method, and enable supervised learning of the hyperparameters

 \rightarrow Main ideas: Projected Gradient algorithm and unrolling paradigm

General context 000	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Outline				

General context

2 Problem formulation

3 Unrolled optimization algorithm

4 Results

6 Conclusion and Perspectives

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Problem	formulation			

Beer-Lambert law [1]

$$I = I_0 \cdot \exp(-WH)$$

$$\implies_{\text{ptical Density}} \quad V = -\log\left(\frac{I}{I_0}\right)$$

(1)

$$V = WH$$

0

• $I \in \mathbb{R}^{3 \times N}$: vectorized HES-stained image

- *I*₀: incident light intensity
- $V \in \mathbb{R}^{3 \times N}$: Optical Density (OD) version of *I*
- $W \in \mathbb{R}^{3 \times r}$: stain-color vector matrix (can be experimentally estimated)
- $H \in \mathbb{R}^{r \times N}$: stain concentration matrix
- N is the image size
- *r* is the number of stains

General context	Problem formulation	Unrolled optimization algorithm 00000	Results 0000	Conclusion and Perspectives
Problem	formulation			

Beer-Lambert law [1]

$$I = I_0 \cdot \exp(-WH)$$

$$\implies_{\text{ptical Density}} \quad V = -\log\left(\frac{I}{I_0}\right)$$

(1)

$$V = WH$$

0

• $I \in \mathbb{R}^{3 \times N}$: vectorized HES-stained image

- *I*₀: incident light intensity
- $V \in \mathbb{R}^{3 \times N}$: Optical Density (OD) version of *I*
- $W \in \mathbb{R}^{3 \times r}$: stain-color vector matrix (can be experimentally estimated)
- $H \in \mathbb{R}^{r \times N}$: stain concentration matrix
- N is the image size
- *r* is the number of stains

• Goal: Estimate *H* given an observed *V* and a known *W*.

General context 000	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Problem 1	formulation			

Equation (1) can be solved by formulating the following optimization problem:

$$\begin{array}{l} \underset{H \in \mathbb{R}^{r \times N}}{\text{minimize}} \quad \frac{1}{2} \|V - WH\|_{\mathrm{F}}^{2} + R(H) \\ \text{subject to} \quad H \ge 0 \end{array}$$
(2)

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Problem f	formulation			

Equation (1) can be solved by formulating the following optimization problem:

$$\begin{array}{l} \underset{H \in \mathbb{R}^{r \times N}}{\text{minimize}} \quad \frac{1}{2} \|V - WH\|_{\mathrm{F}}^{2} + R(H) \\ \text{subject to} \quad H \ge 0 \end{array}$$
(2)

Problem (2) can be rewritten as follows:

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Problem for	ormulation			

• The Regularization term *R* is given by

$$R(H; \lambda_1, \lambda_2, \varepsilon) = \underbrace{\frac{\lambda_1}{2} \|H\|_{\mathrm{F}}^2}_{\text{quadratic term}} + \underbrace{\lambda_2 \sum_{c=1}^r \sum_{i=1}^N \sqrt{(D_v H_c^\top)_i^2 + (D_h H_c^\top)_i^2 + \varepsilon^2}}_{\text{smoothed total variation (STV)}}$$
(4)

where λ_1 and λ_2 are positive regularization parameters, ε is the STV parameter and, $D_{\nu} \in \mathbb{R}^{N \times N}$ and $D_h \in \mathbb{R}^{N \times N}$ are the vertical and horizontal discrete gradient operators, respectively.

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Problem for	ormulation			

Our minimization problem can be seen as the minimization of two functions g and f

$$\underset{H \in \mathbb{R}^{r \times N}}{\text{minimize}} \quad \underbrace{\frac{1}{2} \|V - WH\|_{\mathrm{F}}^{2} + R(H; \lambda_{1}, \lambda_{2}, \varepsilon)}_{g(H; \lambda_{1}, \lambda_{2}, \varepsilon)} + \underbrace{\iota_{[0, +\infty[r \times N]}(H)}_{f(H)} \tag{5}$$

- f and g are proper lower-semicontinuous convex functions on $\mathbb{R}^{r \times N}$
- g is differentiable with an L-Lipschitzian gradient with respect to H.
- *f* is a function whose proximity operator reduces to the projection $\operatorname{proj}_{[0,+\infty[^{r\times N}]}$ onto the nonnegative orthant $[0,+\infty[^{r\times N}]$.

 General context
 Problem formulation
 Unrolled optimization algorithm
 Results
 Conclusion and Perspectives

 Problem formulation
 0000
 0000
 0000
 0000
 0000

Our minimization problem can be seen as the minimization of two functions g and f

$$\underset{H \in \mathbb{R}^{r \times N}}{\text{minimize}} \quad \underbrace{\frac{1}{2} \| V - WH \|_{F}^{2} + R(H; \lambda_{1}, \lambda_{2}, \varepsilon)}_{g(H; \lambda_{1}, \lambda_{2}, \varepsilon)} + \underbrace{\iota_{[0, +\infty[^{r \times N}(H)]}}_{f(H)} \tag{5}$$

- f and g are proper lower-semicontinuous convex functions on $\mathbb{R}^{r \times N}$
- *g* is differentiable with an *L*-Lipschitzian gradient with respect to *H*.
- *f* is a function whose proximity operator reduces to the projection $\operatorname{proj}_{[0,+\infty[^{r\times N})}$ onto the nonnegative orthant $[0,+\infty[^{r\times N})$.
- Problem (5) can be solved using Projected Gradient Algorithm (PGA), which is a special case of the proximal gradient algorithms [2].

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Optimizati	ion algorithm			

Algorithm 1 Projected Gradient Algorithm (PGA)

Input: Initial point $H_0 \in \mathbb{R}^{r \times N}$, fixed stepsize $\gamma \in [0, \frac{2}{L}]$ and number of iterations $K \in \mathbb{N}^*$. **for** $k = 0, 1, \dots, K - 1$ **do** $H_{k+1} = \operatorname{proj}_{[0, +\infty[^{r \times N}]} (H_k - \gamma \nabla g(H_k; \lambda_1, \lambda_2, \varepsilon))$ **end for**

where *L* is the Lipschitz constant of the gradient ∇g given by

$$L = \|W\|_{\mathrm{S}}^2 + \lambda_1 + 8\frac{\lambda_2}{\varepsilon}.$$

General context	Problem formulation 00000●	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Optimizati	ion algorithm			

Algorithm 2 Projected Gradient Algorithm (PGA)

Input: Initial point $H_0 \in \mathbb{R}^{r \times N}$, fixed stepsize $\gamma \in [0, \frac{2}{L}[$ and number of iterations $K \in \mathbb{N}^*$. **for** $k = 0, 1, \dots, K - 1$ **do** $H_{k+1} = \operatorname{proj}_{[0, +\infty[^{r \times N}]} (H_k - \gamma \nabla g(H_k; \lambda_1, \lambda_2, \varepsilon))$ **end for**

where *L* is the Lipschitz constant of the gradient ∇g given by

$$L = \|W\|_{\mathbf{S}}^2 + \lambda_1 + 8\frac{\lambda_2}{\varepsilon}.$$

Difficulty

Hyperparameters setting $(\gamma, \lambda_1, \lambda_2, \epsilon)$

General context 000	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Outline				

• General context

2 Problem formulation

3 Unrolled optimization algorithm

4 Results

6 Conclusion and Perspectives

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Unrolled	PGA			

Advantages

- Deployment of a neural network architecture.
- Learning the hyperparameters from a training dataset.
- Interpretable and flexible algorithm.
- Reducing the required number of iterations (faster convergence).

One layer \mathcal{L}_k of the Unrolled PGA mirrors one iteration for PGA by

$$\begin{aligned} H_{k+1} &= \operatorname{proj}_{[0,+\infty[^{r \times N}} \left(H_k - \gamma_k \nabla g(H_k;\lambda_{1,k},\lambda_{2,k},\varepsilon_k) \right) \\ &= \operatorname{proj}_{[0,+\infty[^{r \times N}} \left(H_k - \gamma_k(A(H) + B(H;\lambda_{1,k}) + C(H;\lambda_{2,k},\varepsilon_k)) \right) \end{aligned}$$
(6)

Figure 3: Unrolled PGA architecture.

where,

- $A(H) = W^{\top}(WH V)$
- $B(H; \lambda_{1,k}) = \lambda_{1,k}H$
- $C(H; \lambda_{2,k}, \varepsilon_k) = \nabla STV(H; \lambda_{2,k}, \varepsilon_k)$

General context 000	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Unrolled]	PGA			

Hyperparameters learning

To obtain the vector of parameters $\Theta_k = [\lambda_{1,k}, \lambda_{2,k}, \varepsilon_k, \gamma_k]^{\top}$, and ensure its positivity, we consider:

$$\forall k \in \{0, .., K-1\} \quad \Theta_k = \text{Softplus}(\Psi_k), \tag{7}$$

where Ψ_k is a vector of parameters learned during the training.

Figure 4: Unrolled PGA architecture with parameters learning.

General context 000	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Unrolled	1 PGA			

Loss function

The resulting neural network architecture is trained by minimizing:

$$\mathcal{L}(\Theta) = \frac{1}{3} \sum_{c \in \{h, e, s\}} \ell(I_c^{(GT)}, I_c(\Theta)),$$
(8)

where

- $\Theta = (\Theta_k)_{0 \le k \le K-1}$ represents the global set of parameters
- ℓ is a given criterion used to compare the reconstructed image I_c associated to the stain c with its corresponding ground truth $I_c^{(GT)}$.

General context	Problem formulation	Unrolled optimization algorithm 00000	Results	Conclusion and Perspectives
Outline				

- General context
- **2** Problem formulation
- **3** Unrolled optimization algorithm

4 Results

6 Conclusion and Perspectives

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Experimen	ntal settings			

- Our data was acquired at the Kremlin-Bicêtre hospital, France.
- The unrolled PGA was composed of 20 layers ⇒ 80 trainable parameters.
- Our model is implemented in Pytorch, using the ADAM optimizer with an initial learning rate set to 0.01.
- The batch size and number of epochs were set to 5 and 150, respectively.

General context 000	Problem formulation	Unrolled optimization algorithm	Results 00●0	Conclusion and Perspectives
Numerica	l results			

Table 1: Stain separation performance.

	PSNR	SSIM	PieAPP
Ruifrok and Johnston [3]	44.841	0.355	2.134
Xu et al. [4]	44.315	0.369	1.979
Vahadane et al. [5]	42.220	0.368	1.851
Yang et al. [6]	42.755	0.355	1.841
PGA	45.254	0.394	1.477
Unrolled PGA	46.525	0.427	1.161

Key observations: PGA and Unrolled PGA vs SOA Methods

- Both PGA and Unrolled PGA demonstrated superior performance compared to the SOA methods.
- The Unrolled PGA outperformed all methods across all metrics.

Figure 5: Illustration of the separated stain images (3 examples). 1st row: Ground truth. 2nd row: Xu *et al.* [4]. 3rd row: Vahadane *et al.* [5]. 4th row: Yang *et al.* [6]. 5th row: PGA. Last row: unrolled PGA.

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
Outline				

- General context
- **2** Problem formulation
- **3** Unrolled optimization algorithm
- 4 Results
- **6** Conclusion and Perspectives

Concluci	on and Daran		0000	
Tonoluoi	on and Daran	activas		
onclusi	on and Deren	ectives		

Conclusion

- Designing an iterative projected gradient algorithm for the stain separation problem.
- ✓ Incorporating smooth total variation regularization to improve the quality of separation.
- ✓ Unrolling the algorithm into a neural network architecture
- ✓ The proposed method demonstrated significant objective improvements, in terms of PSNR, SSIM, and PieAPP, over state-of-the-art methods.
- ✓ Subjective evaluations showed that our approach produced visually superior results in stain separation.

Conclusion	and Perspec	rtives		
General context	Problem formulation	Unrolled optimization algorithm 00000	Results 0000	Conclusion and Perspectives

Conclusion

- ✓ Designing an iterative projected gradient algorithm for the stain separation problem.
- ✓ Incorporating smooth total variation regularization to improve the quality of separation.
- ✓ Unrolling the algorithm into a neural network architecture

r

- ✓ The proposed method demonstrated significant objective improvements, in terms of PSNR, SSIM, and PieAPP, over state-of-the-art methods.
- ✓ Subjective evaluations showed that our approach produced visually superior results in stain separation.

Perspectives

- Extending the optimization problem to estimate both the matrices W and H simultaneously
- Going beyond stain separation to tackle stain normalization as well as other potential applications

General context	Problem formulation	Unrolled optimization algorithm	Results 0000	Conclusion and Perspectives
References				

- [1] D. F. Swinehart, "The Beer-Lambert Law," Journal of Chemical Education, vol. 39, p. 333, July 1962.
- [2] P. L. Combettes and J.-C. Pesquet, "Proximal splitting methods in signal processing," Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer-Verlag, vol. 49, pp. 185–212, December 2009.
- [3] A. Ruifrok and D. Johnston, "Quantification of histochemical staining by color deconvolution," Analytical and Quantitative Cytology and Histology, vol. 23, no. 4, pp. 291–299, 2001.
- [4] J. Xu, L. Xiang, G. Wang, S. Ganesan, M. Feldman, N. N. Shih, H. Gilmore, and A. Madabhushi, "Sparse Non-negative Matrix Factorization (SNMF) based color unmixing for breast histopathological image analysis," *Computerized Medical Imaging and Graphics*, vol. 46, pp. 20–29, December 2015.
- [5] A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, K. Steiger, A. M. Schlitter, I. Esposito, and N. Navab, "Structure-preserving color normalization and sparse stain separation for histological images," *IEEE Transactions on Medical Imaging*, vol. 35, pp. 1962–1971, August 2016.
- [6] S. Yang, F. Pérez-Bueno, F. M. Castro-Macias, R. Molina, and A. K. Katsaggelos, "Deep Bayesian blind color deconvolution of histological images," in *IEEE International Conference on Image Processing (ICIP)*, (Kuala Lumpur, Malaysia), pp. 710–714, October 2023.