
Unrolled Projected Gradient Algorithm for Stain
Separation in Digital Histopathological Images

A. Sadraoui1 A. Laurent-Bellue2 M. Kaaniche1,3

A. Benazza-Benyahia4 C. Guettier2 J.-C. Pesquet1

1Centre for Visual Computing, CentraleSupélec, Université Paris-Saclay, Inria, OPIS, Gif-Sur-Yvette, France
2Department of Pathology, AP-HP. Hôpital Bicêtre, INSERM U1193, Le Kremlin-Bicêtre, France,

3Université Sorbonne Paris Nord, L2TI, UR 3043, Villetaneuse, F-93430, France,
4Université de Carthage, SUP’COM, LR11TIC01, COSIM Lab, Ariana, Tunisia.

October 30th, 2024



Outline

1 General context

2 Problem formulation

3 Unrolled optimization algorithm

4 Results

5 Conclusion and Perspectives



General context Problem formulation Unrolled optimization algorithm Results Conclusion and Perspectives

Outline

1 General context

2 Problem formulation

3 Unrolled optimization algorithm

4 Results

5 Conclusion and Perspectives

3 / 23



General context Problem formulation Unrolled optimization algorithm Results Conclusion and Perspectives

Introduction

Histopathological images

Staining the tissue of a given organ using a combination of color dyes
• Hematoxylin (H): bluish-purple stain strongly related to the nuclei.
• Eosin (E): red-pink stain that highlights the cytoplasm of the nucleus.
• Saffron (S): yellow stain used to detect connective tissues.

Figure 1: Example of HES-stained image.

Challenge: Variation in staining protocols
• Digital histopathological images, particularly HES-stained images, suffer

from color variations due to differences in staining protocols, and materials.
• These color variations affect the accuracy of computer-aided systems used

for disease diagnosis, especially in cancer detection.
☛ Need for the standardization/normalization of the different stain

appearances to ensure consistent results.
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Solution: Stain separation

Figure 2: The principle of stain separation: (a) HES-stained image. (b) H-stained image.
(c) E-stained image. (d) S-stained image.

Contribution
• State-of-the-art methods: SVD, ICA and NMF
• Traditional stain separation methods often require image-specific parameter

tuning, which is set in an empirical manner and computationally expensive.
☛ Goal: design an efficient and robust stain separation method, and enable

supervised learning of the hyperparameters
→ Main ideas: Projected Gradient algorithm and unrolling paradigm
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Problem formulation

Beer-Lambert law [1]

I = I0 · exp(−WH) =⇒
Optical Density

V = − log

(
I
I0

)
V = WH (1)

• I ∈ R3×N : vectorized HES-stained image
• I0: incident light intensity
• V ∈ R3×N : Optical Density (OD) version of I
• W ∈ R3×r: stain-color vector matrix (can be experimentally estimated)
• H ∈ Rr×N : stain concentration matrix
• N is the image size
• r is the number of stains

☛ Goal: Estimate H given an observed V and a known W.
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Problem formulation

Equation (1) can be solved by formulating the following optimization problem:

minimize
H∈Rr×N

1
2
∥V − WH∥2

F + R(H)

subject to H ≥ 0
(2)

Problem (2) can be rewritten as follows:

minimize
H∈Rr×N

1
2
∥V − WH∥2

F︸ ︷︷ ︸
Data fidelity term

+R(H;λ1, λ2, ε)︸ ︷︷ ︸
Regularization term

+ ι[0,+∞[r×N (H)︸ ︷︷ ︸
nonnegativity constraint

(3)
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Problem formulation

• The Regularization term R is given by

R(H;λ1, λ2, ε) =
λ1

2
∥H∥2

F︸ ︷︷ ︸
quadratic term

+λ2

r∑
c=1

N∑
i=1

√
(DvH⊤

c )2
i + (DhH⊤

c )2
i + ε2

︸ ︷︷ ︸
smoothed total variation (STV)

(4)

where λ1 and λ2 are positive regularization parameters, ε is the STV parameter
and, Dv ∈ RN×N and Dh ∈ RN×N are the vertical and horizontal discrete
gradient operators, respectively.
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Problem formulation

Our minimization problem can be seen as the minimization of two functions g
and f

minimize
H∈Rr×N

1
2
∥V − WH∥2

F + R(H;λ1, λ2, ε)︸ ︷︷ ︸
g(H;λ1,λ2,ε)

+ ι[0,+∞[r×N (H)︸ ︷︷ ︸
f (H)

(5)

• f and g are proper lower-semicontinuous convex functions on Rr×N

• g is differentiable with an L-Lipschitzian gradient with respect to H.
• f is a function whose proximity operator reduces to the projection

proj[0,+∞[r×N onto the nonnegative orthant [0,+∞[
r×N .
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☛ Problem (5) can be solved using Projected Gradient Algorithm (PGA),
which is a special case of the proximal gradient algorithms [2].
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Optimization algorithm

Algorithm 1 Projected Gradient Algorithm (PGA)

Input: Initial point H0 ∈ Rr×N , fixed stepsize γ ∈ ]0, 2
L [ and number of

iterations K ∈ N∗.
for k = 0, 1, . . . ,K − 1 do

Hk+1 = proj[0,+∞[r×N

(
Hk − γ∇g(Hk;λ1, λ2, ε)

)
end for

where L is the Lipschitz constant of the gradient ∇g given by

L = ∥W∥2
S + λ1 + 8

λ2

ε
.

Difficulty

Hyperparameters setting (γ, λ1, λ2, ϵ)

11 / 23



General context Problem formulation Unrolled optimization algorithm Results Conclusion and Perspectives

Optimization algorithm

Algorithm 2 Projected Gradient Algorithm (PGA)

Input: Initial point H0 ∈ Rr×N , fixed stepsize γ ∈ ]0, 2
L [ and number of

iterations K ∈ N∗.
for k = 0, 1, . . . ,K − 1 do

Hk+1 = proj[0,+∞[r×N

(
Hk − γ∇g(Hk;λ1, λ2, ε)

)
end for

where L is the Lipschitz constant of the gradient ∇g given by

L = ∥W∥2
S + λ1 + 8

λ2

ε
.

Difficulty

Hyperparameters setting (γ, λ1, λ2, ϵ)

11 / 23



General context Problem formulation Unrolled optimization algorithm Results Conclusion and Perspectives

Outline

1 General context

2 Problem formulation

3 Unrolled optimization algorithm

4 Results

5 Conclusion and Perspectives

12 / 23



General context Problem formulation Unrolled optimization algorithm Results Conclusion and Perspectives

Unrolled PGA

Advantages
• Deployment of a neural network architecture.
• Learning the hyperparameters from a training dataset.
• Interpretable and flexible algorithm.
• Reducing the required number of iterations (faster convergence).

13 / 23
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Unrolled PGA

One layer Lk of the Unrolled PGA mirrors one iteration for PGA by

Hk+1 = proj[0,+∞[r×N

(
Hk − γk∇g(Hk;λ1,k, λ2,k, εk)

)
= proj[0,+∞[r×N

(
Hk − γk(A(H) + B(H;λ1,k) + C(H;λ2,k, εk))

)
(6)

Figure 3: Unrolled PGA architecture.
where,

• A(H) = W⊤(WH − V)
• B(H;λ1,k) = λ1,kH
• C(H;λ2,k, εk) = ∇STV(H;λ2,k, εk) 14 / 23
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Unrolled PGA

Hyperparameters learning

To obtain the vector of parameters Θk = [λ1,k, λ2,k, εk, γk]
⊤, and ensure its posi-

tivity, we consider:

∀k ∈ {0, ..,K − 1} Θk = Softplus(Ψk), (7)

where Ψk is a vector of parameters learned during the training.

Figure 4: Unrolled PGA architecture with parameters learning.
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Unrolled PGA

Loss function
The resulting neural network architecture is trained by minimizing:

L(Θ) =
1
3

∑
c∈{h,e,s}

ℓ(I(GT)
c , Ic(Θ)), (8)

where
• Θ = (Θk)0≤k≤K−1 represents the global set of parameters
• ℓ is a given criterion used to compare the reconstructed image Ic associated

to the stain c with its corresponding ground truth I(GT)
c .
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Experimental settings

• Our data was acquired at the Kremlin-Bicêtre hospital, France.
• The unrolled PGA was composed of 20 layers ⇒ 80 trainable

parameters.
• Our model is implemented in Pytorch, using the ADAM optimizer with an

initial learning rate set to 0.01.
• The batch size and number of epochs were set to 5 and 150, respectively.
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Numerical results

Table 1: Stain separation performance.

PSNR SSIM PieAPP
Ruifrok and Johnston [3] 44.841 0.355 2.134
Xu et al. [4] 44.315 0.369 1.979
Vahadane et al. [5] 42.220 0.368 1.851
Yang et al. [6] 42.755 0.355 1.841
PGA 45.254 0.394 1.477
Unrolled PGA 46.525 0.427 1.161

Key observations: PGA and Unrolled PGA vs SOA Methods
• Both PGA and Unrolled PGA demonstrated superior performance

compared to the SOA methods.
• The Unrolled PGA outperformed all methods across all metrics.
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Visual results

Figure 5: Illustration of the separated stain images (3 examples). 1st row: Ground truth.
2nd row: Xu et al. [4]. 3rd row: Vahadane et al. [5]. 4th row: Yang et al. [6]. 5th row:
PGA. Last row: unrolled PGA. 20 / 23
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Conclusion and Perspectives

Conclusion

✔ Designing an iterative projected gradient algorithm for the stain separation
problem.

✔ Incorporating smooth total variation regularization to improve the quality
of separation.

✔ Unrolling the algorithm into a neural network architecture
✔ The proposed method demonstrated significant objective improvements, in

terms of PSNR, SSIM, and PieAPP, over state-of-the-art methods.
✔ Subjective evaluations showed that our approach produced visually

superior results in stain separation.

Perspectives

➼ Extending the optimization problem to estimate both the matrices W and H
simultaneously

➼ Going beyond stain separation to tackle stain normalization as well as other
potential applications
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