中國科学院武塔创新研究院人工智能与机器人创新中心

Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences

PWISeg: Weakly-Supervised Surgical Instrument Instance Segmentation

Zhen Sun, Huan Xu, Jinlin Wu, Zhen Chen, Hongbin Liu, Zhen Lei

Background

While surgical instrument localization is crucial for computer-assisted \bullet surgeries, existing research mainly focuses on endoscopic settings, neglecting the broader operating room environment where occlusion poses significant challenges.

- Results
- PWISeg outperforms state-of-the-art weakly supervised instance segmentation methods on both Surg-Inst and HOSPI-Tools datasets
- Strong performance on public HOSPI-Tools dataset demonstrates robustness
- Instance segmentation methods could address occlusion issues, but the high cost of obtaining pixel-level annotations necessitates weakly supervised approaches that can achieve accurate results with less labor-intensive labeling.
- The lack of high-quality, open-source datasets for occluded surgical instrument localization hinders progress in this field, highlighting the need for both new datasets and weakly supervised methods to advance research in this area.

Methodology

- FCN-based architecture with box and mask prediction branches
- Supervised box branch training using bounding box annotations
- Weakly supervised mask branch training using:
 - Unsupervised projection loss: Leverages projection relation between masks and boxes
 - Key-pixels association loss: Diffuses labels of key points within bounding box

 $L_{ ext{proj}} = Dice\left(\max_{x}(\hat{oldsymbol{w}}), \max_{x}(oldsymbol{t})
ight) +$ $Dice\left(\max_{y}(\hat{w}),\max_{y}(t)\right)$,

 $L_{\text{ass}} = -\frac{1}{N} \sum_{(x,y) \in bbox} \hat{y}_{(x,y)} \log p_{(x,y)} +$ $(1-\hat{y}_{(x,y)})\log p_{(x,y)}$

Method	Backbone	Detection			Segmentation			
		mAP	mAP_{50}	mAP ₇₅	mAP	mAP_{50}	mAP ₇₅	
Discobox [19]	ResNet-50	62.50	90.40	73.40	13.70	36.40	8.90	
BoxLevelSet [20]	ResNet-50	61.20	87.90	71.20	20.70	69.40	4.80	
BoxInst [18]	ResNet-50	59.30	93.20	69.40	21.30	60.80	13.00	
PWISeg (Ours)	ResNet-50	64.20	96.80	75.70	23.90	66.30	13.80	

Table 2: Performance for object detection and segmentation on the Surg-Inst dataset.

Method	Backbone	Detection			Segmentation		
		mAP	mAP_{50}	mAP ₇₅	mAP	mAP_{50}	mAP ₇₅
Discobox [19]	ResNet-50	74.20	94.60	87.90	25.30	74.10	8.80
BoxLevelSet [20]	ResNet-50	72.60	94.30	80.10	28.10	80.10	10.30
BoxInst [18]	ResNet-50	66.00	88.20	74.90	29.10	77.10	15.00
PWISeg (Ours)	ResNet-50	73.20	95.20	84.40	30.60	80.50	15.80

Table 3: Performance for object detection and segmentation on the HOSPI-Tools dataset.

Loss Function			Detection			Segmentation		
$L_{\rm proj}$	$L_{\rm ass}$	L_{dis}	mAP	mAP ₅₀	mAP ₇₅	mAP	mAP ₅₀	mAP ₇₅
\checkmark			51.60	84.40	57.50	15.20	53.91	9.70
	\checkmark		52.40	83.60	57.70	18.50	51.90	9.80
		\checkmark	40.90	70.10	44.30	11.10	35.80	6.30
\checkmark	\checkmark		60.10	94.40	71.50	20.40	55.20	11.10
\checkmark	\checkmark	\checkmark	64.20	96.80	75.70	23.90	66.30	13.80

 Key-pixels distribution loss: Optimizes distribution of key-pixels heatmap

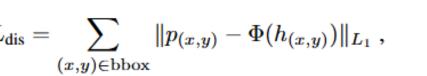
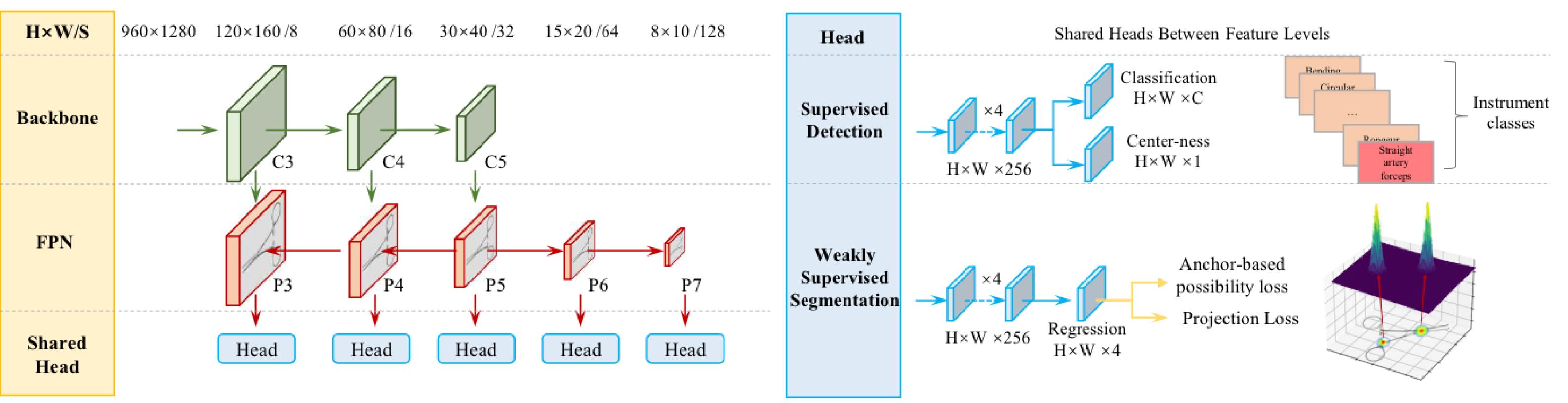


Table 4: The performance comparison on Surg-Inst dataset by using the different loss terms based on ResNet-50.



Introduced Surg-Inst dataset to advance surgical instrument instance segmentation

Conclusions

- PWISeg effectively leverages weak annotations to produce strong segmentation
- Improves accuracy of occluded instrument segmentation lacksquare
- Streamlines annotation and promises improvements in automated surgical tool recognition

The dataset we collected.

