
REDEFINING VISUAL QUALITY:
THE IMPACT OF LOSS FUNCTIONS ON INR-BASED IMAGE COMPRESSION

Lorenzo Catania, Dario Allegra

University of Catania
Department of Mathematics and Computer Science
lorenzo.catania@phd.unict.it, dario.allegra@unict.it

ABSTRACT

Implicit Neural Representations (INR) are a novel data
representation technique which is gaining ground in the
image compression field due to its simplicity and interesting
results in terms of rate/distortion ratio. Although a variety
of methods based on this paradigm were proposed, limited
interest has been given to the analysis of the loss function
and the impact of compression artifacts on the visual quality
of the reconstructed images, which are mainly due to the
adoption of the simple Mean Squared Error (MSE) loss
function and to the evaluation done merely in terms of
Peak Signal-to-Noise Ratio (PSNR), which do not often
correlate with the human perception. In this paper, we
evaluate a set of five loss functions in the context of training
INRs for image compression, applied to three state-of-the-art
architectures, and evaluate their effect on a broader collection
of quantitative metrics and the visual fidelity of the decoded
images to the originals. The presented outcomes show that the
reconstructions obtained by training with some loss functions
as MSE suffer from over-smoothing and aliasing artifacts.
Our findings reveal that through the employing of a suitable
loss function, state-of-the-art architectures quantitatively and
qualitatively outperform the results reported in their original
papers.

Index Terms— Image compression, Implicit neural
representations

1. INTRODUCTION

Lossy image compression has always been widely explored
by the academy and the industry. Traditional codecs,
such as JPEG [1] and AVIF [2], are the most common
way to encode and transmit images due to their high
computational and compression efficiency. However, during
the last decade, new paradigms based on autoencoders
have emerged [3]. These learned methods do not need
hand-crafted heuristics, making them easier to design and
implement, achieve state-of-the-art results and have also
proven to be able to beat traditional codecs in terms of
reconstruction quality [4, 5] and have attracted the interest of

the historical JPEG committee, that is developing an AI-based
standard [6]. Nevertheless, these outstanding compression
capabilities require high computational demands. Training
these networks may require various days, a consistent amount
of computational power and large datasets. On the receiver’s
end, these complex neural networks must be stored and
inference is required to decode the compressed image.
Although recent works [7] attempt to mitigate this issue,
these limitations make these methods still far from being
practical. An emerging paradigm for data representation is
Implicit Neural Representations (INR), in which a signal is
interpreted as a mapping from coordinates to samples and a
neural network is overfitted to this mapping. If the purpose
is to compress data, then the weights of the neural networks
are compressed and transmitted, then decoded by the receiver.
The signal is therefore reconstructed by inference through
the neural network. This approach effectively transforms a
data compression problem into a model compression one,
leading to an alternative viewpoint to the task of encoding
signals. This kind of network has proven to efficiently
represent both videos [8] and images [9, 10, 11]. When
this approach is applied to images, it is often referred to as
Implicit Image Compression or Coordinate-based overfitted
codec. A fundamental step when defining an INR pipeline is
to choose a proper loss function that represents the distortion
between the original signal and the one reconstructed by the
network. In the case of images, the most common loss is
the L2 mean, also known as Mean Square Error (MSE),
and compression distortion is commonly evaluated by using
the traditional Peak Signal-to-Noise Ratio (PSNR). However,
these simple metrics may not match the perceived quality
of decoded images, therefore most complex metrics that
take into account the spatial structure and the characteristics
of the human vision system were developed, for instance,
Structure Similarity (SSIM) [12], Multi-Scale Structure
Similarity (MS-SSIM) [13] and Learned Perceptual Image
Patch Similarity (LPIPS) [14]. A strength of learned methods
is that it is possible to explicitly optimize perceived quality
during training, but most works [9, 11, 15] rely on PSNR for
evaluation and overlook perceptual quality, although recent
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Fig. 1: Samples of distortion artifacts introduced by
traditional codecs compared with INR-based methods, the
latter do not suffer from blocky and colour aliasing artifacts.
Bits-per-pixel and PSNR values are reported below each
picture in the same order.

research [10] has shown that INR-based methods can obtain
visually smooth and accurate results. These methods do not
suffer from well-known noise and block artifacts which are
instead common in traditional codecs, as shown in Figure 1.

The purpose of this paper is to evaluate the impact of
various loss functions on state-of-the-art INR-based image
codecs. The contributions of this research are the following:

• The evaluation of five functions as losses in three SotA
INR-based image compression, a paradigm in which
the choice of the loss function is fundamental yet nearly
unexplored. Results are presented in terms of averaged
quantitative results, visual fidelity of specific samples
and appearance of artifacts.

• We examine in depth the potential of adding structural
factors in loss functions when training INRs for
image compression, proposing recommendations that
consistently improve the state-of-the-art in terms of
perceptive metrics while maintaining a high PSNR.
Also, decoded images benefit reduced artifacts and
better visual fidelity.

• The code used for the experiments and the full results
are publicly released to the community on GitHub 1.

The remainder of this paper is structured as follows. Section
2 presents an overview of the state-of-the-art of the topic.
Section 3 describes the formalisms used in the paper, the
network architecture, the analysed loss functions and the
evaluation metrics used. Section 4 presents the experimental
results and quantitatively and visually compares the effects of
the five loss functions on the considered methods. Section

1https://github.com/INRAnalysis-ICIP24

5 concludes the paper with some considerations about the
impact of the proposals and possible further developments.

2. RELATED WORK

The recent interest in INRs was born by the seminal
work of Mildenhall et al. [16] which used a multi-layer
perception (MLP) to approximate radiance fields, defining
Neural Radiance Fields (NeRFs). To solve the well-known
spectral bias [17], which is the inclination of neural networks
to focus on low-frequency details, they map input coordinates
to a positional encoding [18]. Sitzmann et al. [19] proposed
an MLP architecture named SIREN, which uses sinusoidal
activations with specific initialization schemes and enables
learning high-frequency details without any input encoding.
The first INR-based codec which concerns the images domain
is COIN [9], which uses a simple 16-bit quantization on
weights and a naive SIREN architecture and has demonstrated
how implicit compression was able to match the ratio of
an established codec such as JPEG. Strumpler et al. [20]
added positional encoding and a better 8-bit quantization
scheme to the COIN pipeline, improving the overall results
at the cost of increasing the computational complexity of the
method. Catania et al. [10] propose Neural Imaging Format
(NIF), an INR-based image codec which matches or improves
state-of-the-art results of other INR methods by consistently
reducing the encoding complexity, bringing execution times
from hours to minutes on a single GPU, by using greedy
optimization steps during training. In [10], the visual
quality of the reconstruction is given special attention, with
a structural factor added to the loss function. Recent works
such as (Coordinate-based Low Complexity Hierarchical
Image Codec) (COOL-CHIC) [11] and its extensions [15, 21]
replace positional features with learned latent grids [22]
as inputs to the MLP, which then require fewer neurons.
These methods achieve results comparable to state-of-the-art
traditional codecs with a much lower per-pixel decoding
complexity concerning other learned methods, but they still
exhibit long encoding times, their decoding process is not
trivially parallelizable, plus their results in terms of perceptive
metrics have not been explored yet. Adding structural
information to loss functions has been demonstrated to be
effective in works regarding INR-based video compression
as well, such as NeRV [8] and further evolutions [23]. In
this work, we evaluate the results in terms of quantitative
metrics and qualitative results obtained by state-of-the-art
architectures such as NIF [10], COOL-CHICv1 [11] and
COOL-CHICv2 [15] when using various loss functions, with
and without structural factors added.

3. PROPOSED METHODOLOGY

In this section, we outline the formalisms adopted in the
paper, then present the chosen network architectures and the
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loss functions we evaluate on each of those architectures. In
the end, we define the metrics used to quantitatively evaluate
the results and their correlation with the accuracy and with
the perceived quality of the reconstructed signal.

3.1. Functional representation of an image

The idea behind designing a functional image representation
that a neural network may fit is to define a mapping from some
input features to the image colour for each pixel.

In the case where the network expects positional features,
the input features ix,y of a pixel p are calculated by
normalizing in the range [−1, 1] its position (px, py), where
px ∈ {0, 1, ...,W − 1} and py ∈ {0, 1, ...,H − 1}:

ix,y =

(
2px

W − 1
− 1,

2py
H − 1

− 1

)
(1)

Where (W,H) are the width and the height of the image,
respectively.

If the method is instead designed to learn L
two-dimensional latent grids g0, g1, ..., gL−1, the input
features are given by the following concatenation:

(ix,y) = (ĝ0x,y, ĝ
1
x,y, ..., ĝ

L−1
x,y ) (2)

Where ĝix,y is the value at indices x, y of the i-th
upsampled latent grid ĝi, which is calculating by upsampling
gi at resolution (W,H).

The pixel-wise functional representation of an image data
I is given by a mapping of the form:

I(ix,y) = (Rc, Gc, Bc) (3)

Where (ix, iy) are the input features associated to the
pixel p with RGB values (Rc, Gc, Bc). The purpose of an
INR-based method is, then, to propose a network architecture
and a training strategy which accurately fits the function I .

3.2. Network architectures

We consider three network architectures, adopting variegated
approaches to evaluate the loss functions in a wide scenario.

NIF [10]: A SIREN architecture which takes positional
features as input. A modulation module alters the period of
each activation based on the coordinates of the pixel. Also,
the number of features on each layer is reduced proportionally
to its depth. This technique has been empirically proved to
enhance the bitrate/distortion ratio [10].

COOL-CHIC v1 [11]: A multi-layer perception with
ReLU activations which takes latent grid features as input.
The purpose of this architecture is to reduce the decoding
complexity of the method limiting the amount of the
operations needed to decode each pixel. An auto-regressive
probability model is added to estimate the parameters’
distribution and an entropy factor is added to the loss function
to minimize the parameters’ entropy.

COOL-CHIC v2 [15]: An evolution of [11] which adds
convolutional layers to the original architecture and adaptive
upsampling instead of fixed one to upsample grid features.

3.3. Loss functions

We propose the following five loss functions to be used
during training. In the formula, y is the original sample, ŷ is
the reconstructed sample and N is the number of pixels.

L1: A function calculated as the absolute difference
between two signals, also known as Mean Average Error.

L1(y, ŷ) =

∑
|y − ŷ|
N

(4)

MSE: The most common loss in INR-based compression.

MSE(y, ŷ) =

√∑
(y − ŷ)2

N
(5)

Compared to L1, this loss function penalizes large errors
and is less sensitive to small differences.

LogCosh: It exhibits a shape similar to L1 for large
values and MSE for small values, obtaining the best of
both worlds. In practice, the following approximation of
log(cosh(x)) is used to avoid infinite growth for large
differences:

Lc(y, ŷ) =

∑
((y − ŷ) + sp(2 ∗ (y − ŷ))− ln(2))

N
(6)

Where sp is the SoftPlus function and is calculated as:

sp(x) = ln(1 + ex) (7)

LcSSIM (LogCosh + SSIM): A combination of LogCosh
and SSIM [12], first proposed in [10], which aids the training
process to consider structural information on the image
instead of optimizing each point independently:

LcSSIM(y, ŷ) = Lc(y, ŷ) + α ∗ (1− SSIM(y, ŷ)) (8)

Where α is a factor which scales the SSIM, as it is usually
much bigger than LogCosh and may dominate the loss value.

L1SSIM (L1 + SSIM): A combination of L1 and SSIM
similar to the one formulated above:

L1SSIM(y, ŷ) = (1−α)∗L1(y, ŷ)+α∗(1−SSIM(y, ŷ)) (9)

In this case, the α factor increases the influence of SSIM
on the values and decreases the influence of L1.

3.4. Evaluation metrics

The following evaluation functions are used to quantitatively
compare the results for the various combinations of
architecture and loss. PSNR (Peak Signal-to-Noise Ratio):
This standard metric for compression scales logarithmically
compared to MSE. MS-SSIM (Multi-Scale Structural
Similarity) [13]: An evolution of SSIM [12] which takes
into account the hierarchical structure of the human vision
system. It is calculated as a combination of SSIM at
various resolutions. It was adopted in previous works about
INRs [10] as well. LPIPS (Learned Perceptual Image



Patch Similarity) [14]: A learned metric based on hidden
features of classification architectures. Even if no previous
works on INR compression adopt this metric, it has been
demonstrated to capture distortions which may not affect
PSNR or MS-SSIM [24, 5].

4. EXPERIMENTAL RESULTS

4.1. Dataset and settings

The following experiments were run on the Kodak [25]
dataset, a historical standard for image processing. Although
more recent datasets are available, this is the most commonly
used for INR-based compression assessment as those
methods are characterised by long encoding times, which
make it difficult to widely test them on high-resolution
images [10]. NIF and COOL-CHICv1 were trained
with the faster configurations available for every bitrate,
performing between 1000 and 1500 optimization steps, while
COOL-CHICv2 was trained using the faster preset provided
by the authors. Although better results can be obtained by
using slower presets, these fast training methods achieve a
sufficiently good rate/distortion ratio for our purposes. The
α factor is set to 0.01 for LogCosh+SSIM and to 0.2 for
L1+SSIM. In line with previous works [3, 10], MS-SSIM
values are normalized as −10log10(1−MS-SSIM) to better
visualize small differences in the plots. All comparisons are
made in the RGB colorspace.

4.2. Quantitative results

The following paragraphs discuss the various results obtained
when replacing the original loss function of each architecture
with our proposed ones. The original loss function is
reported in green, while losses with and without a structural
factor are reported in red and blue respectively. The
marker shape distinguishes between the point-wise distortion
function adopted (L1, MSE and LogCosh). The arrow beside
the metric’s name indicates if the metric should be maximized
(up-arrow) or minimized (down-arrow). Two traditional
codecs, AVIF [2] and JPEG [1] are reported as baselines
using dashed lines. Note that, especially on COOL-CHIC
architectures, different loss functions may obtain different
ranges of bits-per-pixel. This is because in those methods
the rate/distortion ratio is controlled by a λ factor which
balances distortion and latent parameters entropy. As the
various losses have different magnitudes on average, the same
λ parameter obtains different average bits-per-pixel values. In
our experiments, we stick to the default MSE-tuned λ values.

4.2.1. COOL-CHICv1

Results for COOL-CHICv1 are reported in Figure 2a. In
terms of PSNR, the original MSE loss obtains the best results,
although LogCosh performs similarly. That’s the awaited

outcome as not only is PSNR calculated based on the MSE
value, but this is also the metric used for evaluations in the
original paper, therefore it is straightforward that the adopted
loss function is the one which maximizes the results in that
setting. Regarding MS-SSIM, every loss achieves similar
results, although these with a structural factor achieve slightly
better values. Finally, by using the original loss function
this method is outperformed by JPEG in terms of LPIPS.
However, losses with an SSIM factor obtain better results and
compare or improve over JPEG at every bitrate. In summary,
COOL-CHICv1 is always outperformed by AVIF.

4.2.2. COOL-CHICv2

Analogously to the COOL-CHICv1, the originally adopted
MSE loss is the best performing in terms of PSNR for
COOL-CHICv2 in figure 2b, and the observations done
in the previous paragraph hold here as well. In terms
of MS-SSIM, losses with an SSIM factor consistently
improve over the original MSE loss. In particular, training
with LogCosh+SSIM obtains comparable results with AVIF
between 0.9 and 2.0 bits-per-pixel, while MSE loss is
substantially outperformed. Similarly, structural losses
obtain similar LPIPS values compared to AVIF while the
original loss function is not able to. Considering that the
reconstruction metrics may be overall increased by using
slower presets, these results demonstrate that INR-based
methods can outperform well-established codecs traditional
codecs when appropriately tuned.

4.2.3. NIF

Figure 2c reports the results for NIF, which adopts
LogCosh+SSIM as the default loss. In terms of PSNR,
the original loss function seems to be the best-performing,
although removing the structural factor slightly increases
the results. Results are similar for MS-SSIM, although
the combination L1+SSIM obtains slightly better results.
Regarding LPIPS, most losses obtain better results than JPEG
at low bits-per-pixel but are outperformed at higher bitrates,
and the original LogCosh+SSIM loss is the best performer.
Overall, NIF is not able to reach the same performance as
AVIF, but it is fair to point out that its purpose is to provide
faster encoding times compared to other INR-based methods.

4.3. Qualitative comparisons

Figure 3 reports some samples to visually compare the results
of INR-based models trained with the proposed set of loss
functions, along with standard hand-crafted codecs such as
JPEG and WebP and the modern JPEG XL and AVIF formats.
JPEG and WebP reconstructions both suffer from block
artifacts and blurry effects. JPEG XL reconstructions are
blurry overall, while AVIF ones are smoother but the codec
tends to miss finer details, such as the building decoration
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Fig. 2: Quantitative results of the evaluated loss functions applied to the considered architectures. The original loss is reported
in green, while red and blue blends are used for point-wise losses and losses with an SSIM factor respectively. Dashed lines are
used for traditional codecs reported as baselines.

on the bottom in sample #24 (Figure 3a). COOL-CHIC
reconstructions exhibit distorted edges when trained without
our proposed structural loss factor, which instead mitigates
this issue. Still, some artifacts represented by bright lines
may appear on edges and color aliasing may be present.
These are especially present on COOL-CHICv1, such as
in the bottom part of Kodak #24, and on COOL-CHICv2
in the same image when encoding with L1+SSIM. NIF
reconstructions do not suffer from such artifacts but are
characterised by the presence of high-frequency noise, which
is presumably due to the positional encoding applied to the
input coordinates to increase the frequency spectrum to which
the network is sensible. However, NIF occasionally better
represent fine lines such as the door details on Kodak #1
(Figure 3b), which are sometimes smoothed by COOL-CHIC
methods. On Kodak #8 (Figure 3a), COOL-CHIC methods
are not able to reconstruct the roof details when trained with
MSE, but our proposal of adding an SSIM factor to the
loss solves this issue. This is evident in Figure 3d, where
in some patches COOL-CHIC methods trained with their
default loss, which is MSE, smooth away important image

segments such as vegetation, sea waves and ground details.
Our proposed LogCosh+SSIM loss, instead, produces more
fidel reconstructions and obtains similar or better results in
terms of MS-SSIM and LPIPS.

5. CONCLUSION

In this paper, we have evaluated a set of five loss functions for
INR-based image compression. These losses were applied
to the training of three different state-of-the-art methods and
their impact on the encoding process has been evaluated. We
have given special attention to the differences between the
standard MSE loss and our proposals with an SSIM factor.
The presented results show that, in a dataset which is small
but still a reference for INR-based compression, our approach
achieves better results in terms of both visual fidelity and
perceptive metrics, while not considerably affecting the
PSNR. Further explorations of more complex structural losses
should be done, as these novel image compression methods
must produce visually pleasing results to be adopted in
practice.
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0.90, 0.32
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0.32bpp, 21.72db

0.91, 0.32

(c) Visual samples from Kodak #8
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bpp, PSNR
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CCv1 - MSE
0.39bpp, 29.66db

0.94, 0.26

CCv2 - MSE
0.42bpp, 31.17db

0.95, 0.21

CCv1 - Lc+SSIM
0.18bpp, 25.74db

0.90, 0.39

CCv2 - Lc+SSIM
0.25bpp, 28.22db
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bpp, PSNR

MS-SSIM, LPIPS

CCv1 - MSE
0.33bpp, 27.06db

0.92, 0.32

CCv2 - MSE
0.37bpp, 28.08db

0.93, 0.29

CCv1 - Lc+SSIM
0.19bpp, 24.44db

0.90, 0.38

CCv2 - Lc+SSIM
0.30bpp, 26.63db

0.94, 0.26

Original MSE (Original) Lc+SSIM (Suggested)

(d) Visual samples of artifacts introduced by training COOL-CHIC
models with MSE, with alternatives obtained by using the
LogCosh+SSIM loss function.

Fig. 3: Visual comparisons on various Kodak image details. COOL-CHIC models are reported as “CC” and LogCosh+SSIM
loss is reported as ”Lc+SSIM” for conciseness. The uncompressed crop is reported in the top-left corner of each sequence,
along with the resolution of the full image, while bits-per-pixel, PSNR, MS-SSIM and LPIPS values are reported below each
crop in this same order.
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[20] Y. Strümpler, J. Postels, R. Yang, L. V. Gool, and
F. Tombari, “Implicit neural representations for image
compression,” in European Conference on Computer
Vision, 2022.

[21] H. Kim, M. Bauer, L. Theis, J. R. Schwarz, and
E. Dupont, “C3: High-performance and low-complexity
neural compression from a single image or video,” 2023.
[Online]. Available: https://arxiv.org/abs/2312.02753

[22] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant
neural graphics primitives with a multiresolution hash
encoding,” ACM Transactions on Graphics, 2022.

[23] Y. Bai, C. Dong, C. Wang, and C. Yuan, “PS-NeRV:
Patch-wise stylized neural representations for videos,”
in IEEE International Conference on Image Processing,
2023.

[24] R. Yang and S. Mandt, “Lossy image compression
with conditional diffusion models,” Advances in Neural
Information Processing Systems, 2024.

[25] Kodak. (1999) Lossless true color image suite. [Online].
Available: https://r0k.us/graphics/kodak/

https://arxiv.org/abs/2103.03123v2
https://arxiv.org/abs/2312.02753
https://r0k.us/graphics/kodak/

	 Introduction
	 Related work
	 Proposed methodology
	 Functional representation of an image
	 Network architectures
	 Loss functions
	 Evaluation metrics

	 Experimental results
	 Dataset and settings
	 Quantitative results
	 COOL-CHICv1
	 COOL-CHICv2
	 NIF

	 Qualitative comparisons

	 Conclusion
	 References

