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Implicit Neural Representations

Implicit Neural Representations (INR) is an emerging paradigm for data representation in which a signal

is interpreted as a function from coordinates to samples: I(ix,y) = (Rc, Gc, Bc).
A neural network is then overfitted to this function. If the purpose is to compress data, then the pa-

rameters are compressed and transmitted. The signal is therefore reconstructed by inference through

the neural network.

A fundamental step when defining an INR pipeline is to choose a proper loss function that represents

the distortion between the original signal and the one reconstructed by the network. In the case of

images, themost common loss is the L2mean, also known asMean Square Error (MSE), and compression

distortion is commonly evaluated by using the traditional Peak Signal-to-Noise Ratio (PSNR). However,

these simple metrics may not match the perceived quality of decoded images,

Contributions

The evaluation of five functions as losses in three SotA INR-based image compression, a paradigm

in which the choice of the loss function is fundamental yet nearly unexplored. Results are

presented in terms of averaged quantitative results, visual fidelity of specific samples and

appearance of artifacts.

We examine in depth the potential of adding structural factors in loss functions when training INRs

for image compression, proposing recommendations that consistently improve the state-of-the-art

in terms of perceptive metrics while maintaining a high PSNR. Also, decoded images benefit

reduced artifacts and better visual fidelity.

The code used for the experiments and the full results are publicly released to the community on

GitHub: https://github.com/INRAnalysis-ICIP24.

Network architectures

NIF [1]: A SIREN architecture which takes positional features as input.

A modulation module alters the period of each activation based on the

coordinates of the pixel. Also, the number of features on each layer is

reduced proportionally to its depth. This technique has been empirically

proved to enhance the bitrate/distortion ratio.

COOL-CHIC v1 [2]: A multi-layer perception with ReLU activations which takes latent grid

features as input. The purpose of this architecture is to reduce the decoding complexity of

the method limiting the amount of the operations needed to decode each pixel. An auto-

regressive probability model is added to estimate the parameters’ distribution and an entropy

factor is added to the loss function to minimize the parameters’ entropy.

COOL-CHICv2 [3]: An evolution of [2]which

adds convolutional layers to the original ar-

chitecture and adaptive upsampling instead

of fixed one to upsample grid features.

Methodology

We propose the following five loss functions to be used during training. In the formula, y is the

original sample, ŷ is the reconstructed sample and N is the number of pixels.

L1: Also known as Mean Average Error, it is the

absolute difference between two signals.

L1(y, ŷ) =
∑

|y−ŷ|
N

MSE: The most common loss in INR-based

compression.

MSE(y, ŷ) =
√∑

(y−ŷ)2
N

Compared to L1, this loss function penalizes

large errors and is less sensitive to small

differences.

LogCosh: In practice, the following

approximation of log(cosh(x)) is used to avoid

infinite growth for large differences:

Lc(y, ŷ) =
∑

((y−ŷ)+sp(2∗(y−ŷ))−ln(2))
N

Where sp is the SoftPlus function and is

calculated as:

sp(x) = ln(1 + ex)
It exhibits a shape similar to L1 for large values

and MSE for small values, obtaining the best of

both worlds.

L1SSIM (L1 + SSIM): A combination of L1 and SSIM:

L1SSIM(y, ŷ) = (1 − α) ∗ L1(y, ŷ) + α ∗ (1 − SSIM(y, ŷ))
In this case, the α factor increases the influence of SSIM on the values and decreases the influ-

ence of L1.

LcSSIM (LogCosh + SSIM): A combination of LogCosh and SSIM [4]:

LcSSIM(y, ŷ) = Lc(y, ŷ) + α ∗ (1 − SSIM(y, ŷ))
Where α is a factor which scales the SSIM, as it is usually much bigger than LogCosh and may

dominate the loss value. First proposed in [1], it aids the training process to consider structural

information on the image instead of optimizing each point independently

Quantitative results
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Visual comparisons
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