Explain to Train (ET): Leveraging explanations to enhance the training of a Multimodal Transformer

université ^{de} BORDEAUX

Meghna P Ayyar, Jenny Benois-Pineau, Akka Zemmari,

LABORATOIRE BORDELAIS DE RECHERCHE EN INFORMATIQUE

Overview

- Introduction
- Feature Explanation Method (FEM)
- Rollout-FEM for Transformers

• ET Framework

- Video Transformer
- Signal Transformer
- Multi-modal Training

• Results

- \circ Validation on UCF50 dataset
- Multimodal dataset
- Conclusion

Introduction

3

- Explainable AI (XAI) is vital for improving transparency and reliability of neural network decisions.
- Transformers have emerged as SOTA for various tasks for single modality like image, language, ... and multimodal approaches.
- The potential of XAI methods for training transformers remains underexplored.

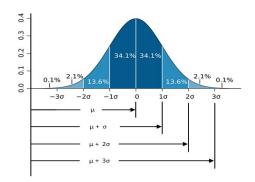
A young lady wearing blue and black is running past an orange cone.

Explanation-guided Training (ET): adapts an XAI method (FEM) [2] for transformers and identifies important input regions to guide the model to focus on the salient regions during fine-tuning

 [1] Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X. and Sclaroff, S., 2018. Top-down neural attention by excitation backprop. *IJCV*, *126*(10), pp.1084-1102.
 [2] Fuad, K.A.A., Martin, P.E., Giot, R., Bourqui, R., Benois-Pineau, J. and Zemmari, A., 2020, November. Features Understanding in 3D CNNs for Actions Recognition in Video. In 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-6). IEEE.

FEM: Feature Explanation Method [1]

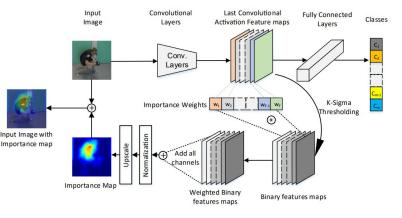
The core of the method relies in the back-tracing of "strong" features from the last feature-layer (conv layer). It "explains" the Network decisions at the generalization step.



K-Sigma Thresholding: Convolutional follows normal distribution. So we can apply $\mu \pm k\sigma$ threshold rule to extract rare important features. Values higher than the threshold is kept.

$$B_k(a_{i,j,k}) = \begin{cases} 1 & \text{if } a_{i,j,k} \ge \mu_k + K * \sigma_k \\ 0 & \text{otherwise} \end{cases}$$

Publicly Available at: https://github.com/labribkb/fem/blob/main/FEM.ipynb



Step 1: Generate Binary Map of the last conv layer activations with K-Sigma thresholding

Step 2: Weighted Average of the binary maps using the mean activations as weights

Step 3: Normalize and Upscale to input dimension

4

[1] Fuad, K.A.A., Martin, P.E., Giot, R., Bourqui, R., Benois-Pineau, J. and Zemmari, A., 2020, November. Features Understanding in 3D CNNs for Actions Recognition in Video. In 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-6). IEEE.

Rollout-FEM for Transformers

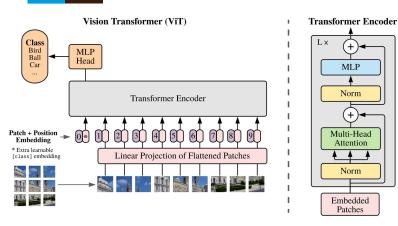
+

MLP

Norm

+

Norm



5

Self-attention A for each encoder block is computed as

$$A = Q \dot{K}^T$$

Attention Rollout [2] is used to visualize these attentions across the layers тт

$$A'^{l} = I + \sum_{h=1}^{H} A_{h}^{l} \qquad A_{roll} = \prod_{l=1}^{L} A'^{l}$$

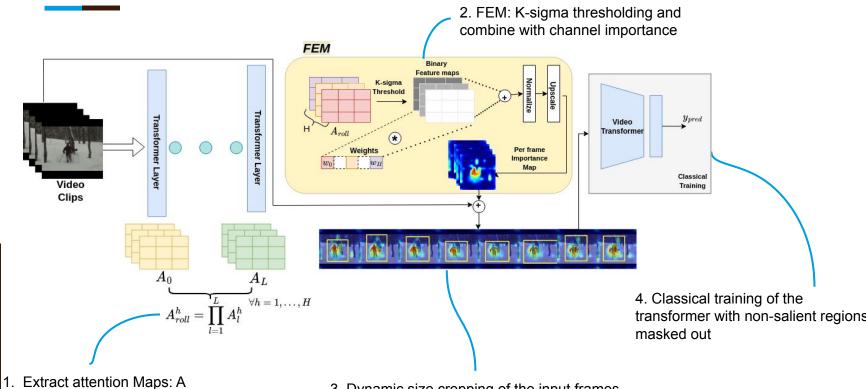
- Rollout weights attentions of different heads equally.
- We propose: Use FEM to assign . importance per head and choose only the strong attentions for visualization

$$A_{h}^{'l} = I + A_{h}^{l} \forall h = 1, ...H$$
 $A_{h,roll} = \prod_{l=1}^{L} A_{h}^{'l}$

 $b_h(A_{h,roll}) = \begin{cases} 1 & \text{if } a_{i,h} \ge \mu_h + K * \sigma_h \\ 0 & \text{otherwise} \end{cases}$

[1]Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021 [2] Samira Abnar, Willem H. Zuidema, Quantifying Attention Flow in Transformers. ACL 2020: 4190-4197

ET Framework: Training Video Transformer



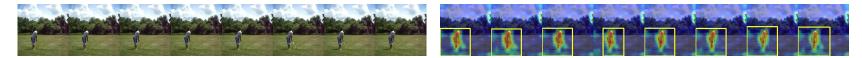
abu dhabí 202

3. Dynamic size cropping of the input frames to retain salient region with highest area

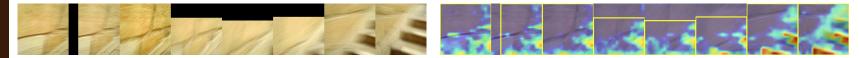
Visualizations

7

UCF50[1] - Horse Riding



UCF50[1] - Golf Swing



BIRDS[2]: Risk of Fall

[1] Reddy, K.K. and Shah, M., 2013. Recognizing 50 human action categories of web videos. Machine vision and applications, 24(5), pp.971-981. [2] Mallick, R., Yebda, T., Benois-Pineau, J., Zemmari, A., Pech, M. and Amieva, H., 2022. Detection of risky situations for frail adults with hybrid neural networks on multimodal health data. IEEE MultiMedia, 29(1), pp.7-17.

Video

Risk Categories

No risk

Risk of falling due to Actions

Risk of fraud

Risk of physiological falling Risk of domestic accident Fall

Taking medication

Glass of water

Risk of falling due to Envirenment

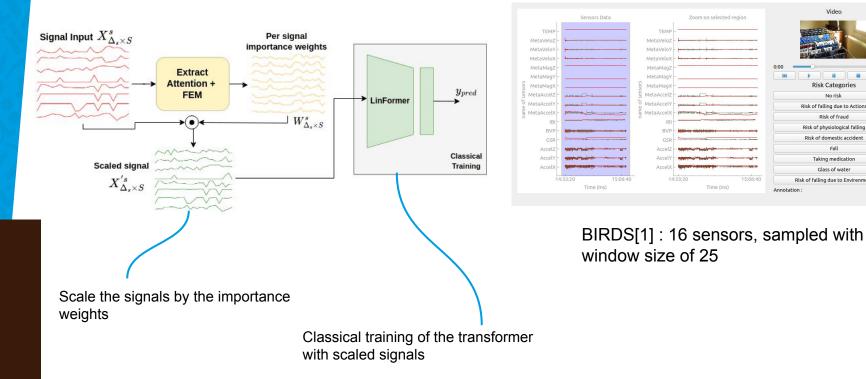
0:02

0:00

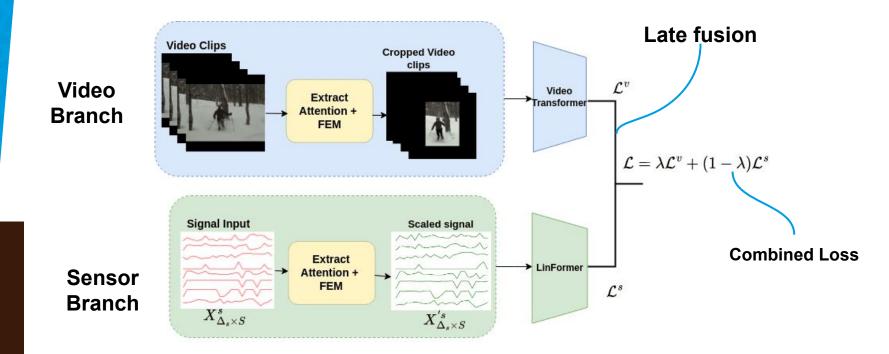
H . 11 101

Annotation :

ET Framework: Training Sensor Transformer



ET Framework: Multimodal Training



Results: Validation on UCF50 dataset

Model	Top-1 Acc
TimeSFormer [11]	92.27%
Swin Transformer (Swin-T) [12]	91.01%
Video Swin-T-In (IFI) [25]	93.04%
TimeSFormer + ET (Ours)	94.14%

Top-1 test accuracy on the UCF50 dataset for videos

- UCF50 activity recognition dataset of 50 action classes.
- Interpreting For Improving (IFI) [1]: combines class-specific attention gradients with the attention weights, to provide extra supervision during training

Our method improves on both the vanilla TimesFormer and training with IFI

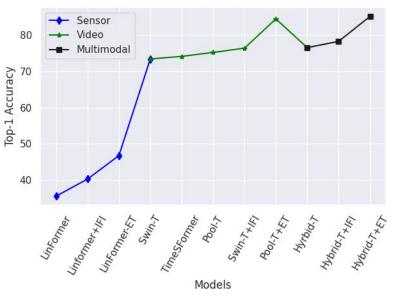
Results: Multimodal Dataset

Model	Top-1 Acc
TimeSFormer [6]	74.11%
Swin Transformer (Swin-T) [7]	73.39%
Pooling Transformer (Pool-T) [8]	75.19%
Video Swin-T-In (IFI) [2]	76.37%
Pool-T + ET (Ours)	84.45%

 Table 1. Top-1 test accuracy on the BIRDS dataset for videos

Model	Top-1 Acc
LinFormer [9]	35.55%
LinFormer-In (IFI) [2]	40.26%
LinFormer-ET (Ours)	49.09 %

Table 2. Top-1 test accuracy on the BIRDS dataset for signal modality



Comparison with the different modalities and models. Hybrid: Multimodal training

- Multimodal Training has 75.41%, with IFI 78.26%, and with ET has an accuracy of 85.12% which is an increase of ~ 8.6% and ~ 7%
- **ET** thus improves for the video, signal and the multimodal training

Conclusion

- The ET framework that we proposed is able to improve the performance of training by guiding the network to focus only on the salient regions in the input
- ET can be combined with other XAI methods but we used it with our method Rollout-FEM and trained Transformer based models for an image, video and signal dataset
- ET shows promise with both the single modality and multi modality.
- Input pruning, by setting certain features to zero during frame cropping in videos, could reduce computation, training time and improve generalization when fine-tuning on different datasets.

"Scan this QR code to access our code for the Explain to Train (ET) framework."

