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ABSTRACT

In this paper, we propose an improved model of Shallow-
UWnhnet for underwater image enhancement. In the proposed
method, we enhance the learning process and solve the van-
ishing gradient problem by a skip connection, which con-
catenates the raw underwater image and the impulse response
of low-pass filter (LPF) into Shallow-UWnet. Additionally,
we integrate the simple, parameter-free attention module
(SimAM) into each Convolution Block to enhance the visual
quality of images. Performance evaluations with state-of-the-
art methods show that the proposed method has comparable
results on EUVP-Dark, UFO-120, and UIEB datasets. More-
over, the proposed model has fewer trainable parameters
and the resulting faster testing time is suitable for real-time
processing in underwater image enhancement, which is par-
ticularly for resource-constrained underwater robots.

Index Terms— Underwater image enhancement, CNN,
Shallow-UWnet, impulse response of low-pass filter, SimAM
attention module

1. INTRODUCTION

The decline in underwater image quality has constrained ac-
curate visuals for diverse ocean engineering and scientific re-
search, such as underwater object classification, saliency de-
tection, monitoring the marine environment, and detecting
underwater targets. While there has been some advancement
in enhancing underwater image quality, serious degradation
problems remain, and unfortunately, research in this area is
infrequent [1]. When light travels through water, the red chan-
nel has more significant attenuation. Thus, the absorption
rate of the red light is higher compared with the blue and
green channels, resulting in underwater images with blue-
green tones. Then, scattering and absorption are the main
causes of underwater image deterioration. Light absorption
deteriorates the color and contrast of images, while forward
and backward scattering causes image blurring. Moreover,
the scattering of light by tiny underwater particles, includ-
ing suspended solids, plankton, and waterborne dust, reduces
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Fig. 1 Schematic diagram of underwater imaging

the image intensity. In an underwater environment, light en-
counters suspended particles within the water medium before
reaching the camera. This can alter the direction of the light
from the camera, leading to image blurring, resulting in low
contrast and a fog-like effect [1]. Then, underwater images
suffer from noise and distortion caused by water turbidity and
low light conditions. Due to the impact of light scattering,
absorption, and noise, underwater images have reduced con-
trast, color distortion, and blurred details. Fig. 1 illustrates
the schematic representation of the underwater imaging. In
accordance with the Jaffe-McGlamery model [2], underwater
images can be modeled as

Ur =Uq+Uyps + Ups (D

where Ur represents the final underwater image captured by
the camera, Uy is the direct attenuation (light reflected by
the object without scattering), and Uy, and Uy, correspond
to the forward and backward scattering components, respec-
tively [2].

2. EXISTING RESEARCH

Various approaches are utilized to enhance the visual clar-
ity of underwater images, and they can be classified into
three main groups: non-physical model-based methods,
physical model-based methods, and data-driven methods.
Non-physical model-based methods such as histogram equal-
ization and filtering methods enhance the visual effect by
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modifying the image pixels. However, these methods only
concentrate on color correction and contrast. Thus, they
excessively enhance the underwater images, resulting in
structural detail damage and undesirable artifacts [3]. The
physical model-based method utilizes prior knowledge to
estimate the model parameters for achieving image enhance-
ment. Dark channel prior [4], one line of research on physical
model-based methods, incorporates wavelength-dependent
algorithms. It utilizes the dark channel for estimating the
transmission map in underwater images. However, these
methods face challenges such as lack of adaptability, color
distortion, and high computational cost, resulting in unsat-
isfactory outcomes when there is a mismatch between prior
and target scenes.

Data-driven methods, trained on synthetic pairs of de-
graded and corresponding high-quality images, are successful
in low-level vision tasks because they can adapt to various
image conditions and capture complex patterns. WaterNet
[5] constructs the underwater image enhancement benchmark
(UIEB) dataset with real underwater images and correspond-
ing reference images and encourages deep learning-based
underwater image enhancement. Then, experimental re-
sults show that WaterNet outperforms state-of-the-art (SOTA)
methods in non-physical and physical-based methods. Never-
theless, the complete removal of backscatter remains in some
conditions. The generative adversarial network (GAN)-based
underwater image enhancement model, FUnIE-GAN [6], is
adversarially trained on the enhancement of underwater vi-
sual perception (EUVP) dataset using a non-linear mapping
between the degraded and enhanced images. It improves un-
derwater image quality and enhances image details. However,
the resulting images have undesirable oversaturation and un-
dersaturation of color. Furthermore, the inability to precisely
restore pixel intensity often results in poor texture and color
recovery. Fabbri et al. proposed the underwater generative
adversarial network (UGAN) [7] to enhance the color in un-
derwater images. However, the generation of paired distorted
images by CycleGAN within the underwater dataset causes
inaccuracies in the underwater enhancement learning model,
which is common for GAN-based approaches. Then, the
common issue, carefully tuning hyperparameters in GANSs,
remains. Additionally, underwater images face a challenge
due to the lack of standardized and high-quality reference
images. To solve this problem, simultaneous improvement
and super-resolution (Deep SESR) [8], is introduced to the
UFO-120 dataset, the first dataset for super-resolution and
enhancement of underwater imagery. Deep SESR employs
a feature extraction network that includes residual dense
blocks and an auxiliary attention network. While Deep SESR
performs better than existing methods, the large number of
parameters makes it unsuitable for resource-constrained un-
derwater vehicles.

In 2023, underwater image enhancement and turbidity
removal (iDehaze) [9] is proposed using a two-step deep

learning approach. In iDehaze, input underwater images
are first dehazed using a dehazing model and subsequently
transformed into the color model. iDehaze outperforms un-
derwater image quality measure (UIQM) scores; however,
peak-signal-to-noise ratio (PSNR) scores are less favorable.
Then, the visual results of iDehaze have an excessively pro-
cessed appearance when observed by the human eye. The
multichannel deep convolutional neural network linked to the
VGG network (MDCNN-VGG) [10] improves domain adap-
tation for multi-domain underwater images. It consists of two
network streams, followed by three fully connected layers,
and passes the information to the VGG network to enhance
underwater images. Thus, MDCNN-VGG has a complex
deep architecture but still encounters problems in preserving
fine details in blurred images, color bias and overexposure.
Nowadays, autonomous underwater vehicles (AUVs) and
remotely operated vehicles (ROVs) play a significant role
in underwater explorations to capture real-time underwater
images. However, the existing SOTA methods are compu-
tationally demanding, require significant memory resources,
and are unsuitable for portable AUVs. Shallow-UWnet [11], a
lightweight and compressed model for underwater image en-
hancement, emerges as an option for AUVs. Shallow-UWnet
has 18 times fewer trainable parameters and 10 times faster
computational time compared with SOTA methods. With the
lowest testing time, Shallow-UWnet has better-enhanced un-
derwater image ability and color correction. Despite improve-
ments, Shallow-UWnet has some limitations, such as noise
artifacts and color spots with a reddish hue in heavy hazy ar-
eas. Then, it struggles to distinguish between image informa-
tion and noise in underwater images. The improved version
of Shallow-UWnet [12] incorporates batch normalization and
replaces the Leaky-ReLU function with the rectified linear
unit (ReLU) function in Shallow-UWnet. Additionally, an ex-
tra structural similarity (SSIM) loss is added, which increases
computational resources and training time. Consequently, the
improved Shallow-UWnet has a larger number of parame-
ters compared with the conventional Shallow-UWnet. Then,
it does not have an improvement in the UFO-120 dataset
when compared with the conventional Shallow-UWnet. In
2023, Zhou et al. proposed a Shallow-RepNet [13] by in-
corporating RepBlocks and Shallow-UWnet. Furthermore,
Shallow-RepNet also introduced an area contrast distribution
loss to optimize the difference between the output and refer-
ence image. However, Shallow-RepNet has lower PSNR and
SSIM scores compared with Shallow-UWnet.

3. PROPOSED METHOD

3.1. Architecture and learning

Fig. 2 illustrates the architecture of the conventional Shallow-
UWnet and the proposed method. In Shallow-UWnet, the first
convolutional (Conv) layer utilizes 256 x256 RGB underwa-
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Fig. 2 Architectures of (a) conventional Shallow-UWnet and (b) proposed method

ter images with 64 feature maps and a kernel size of 3x3.
Subsequently, a ReLU activation is applied, and three suc-
cessive convolutional blocks (ConvBlocks) are connected to
the raw image via a skip connection. Each ConvBlock com-
prises a Conv layer and ReL.U activation function paired with
a drop-out regularization technique. Finally, it passes through
the final Conv layer and generates the enhanced underwater
image as depicted in Fig. 2 (a). The mean square error (MSE)
loss and VGG perceptual loss functions are combined to pre-
serve the sharpness of edges and structural similarity. The
MSE loss is computed as
I )
Lutse =~ ;(IGT In) o)
The VGG perceptual loss is generated from 19 layers of
the pre-trained VGG model, which measures the Euclidean
distance between the ground truth and enhanced images as

1 n
Lvaa = - ll6(ler)i = éLen )il 3)
=1

where ¢ refers to the feature representation function of the
VGG model, n represents the number of pixels, and I and
Ign refer to the ground truth image and its respective en-
hanced image, respectively [11]. Finally, the total loss func-
tion is computed as

Liotat = Lyvse + Lyvaa 4

3.2. Impulse response of LPF

The sequential input of a noisy image and the impulse re-
sponse of LPF in a convolutional neural network (CNN)
improved image denoising performance in [14] [15]. Mo-
tivated by this fact, the proposed method sequentially in-
puts the raw underwater image and the impulse response of

LPF via skip connection, aiming at enhancing the under-
water image’s visual quality. The impulse response of the
sparsity-based LPF (SLPF) is created by the following steps.
Initially, the power spectrum value P(w;,ws) is determined
by P(wi,ws) = |X(w1,ws)|?, where X (wy,ws) represents
the Fourier transform of the underwater image. Subsequently,
the power spectrum sparsity .S is calculated as

P,
S =_——2
Ph+P'u

where P, represents the overall power spectrum value, while
P, and P, indicate the horizontal and vertical power spectrum
values at the center, respectively, as shown in Fig. 3. Then,
the threshold value ~ is formulated as

®)

7=AS (6)

The scaling parameter A is specified based on the image size.
Following this, the predominant portion of the image, focused
at the center, is assigned to the value of one according to the
~ value, while the remaining portion is set to zero. Then, the
frequency response of the SLPF, Hg (w1, ws), is designed by

1, if P(wi,w2) <7v
0, otherwise

Hg (w1,w2) = { @)

Subsequently, the frequency axis is reverted to the four cor-
ners. Finally, the impulse response of SLPF is obtained by the
inverse Fourier transform of the shifted Hg(wy,ws) version,
thereby converting it to a spatial domain image.

Following this, the proposed method employs three well-
known impulse response of LPFs such as direct LPF (DLPF),
Gaussian LPF (GLPF), and Butterworth LPF (BLPF) for
comparison purposes. Firstly, specify the size of the impulse
response of LPF based on the image size. Subsequently, the
corresponding frequency response of the LPF is applied.
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For the DLPF,

1 w2 4+ w2) < w,
oo = { VT
For the GLPF,
He (w1, wy) = e~ (wit+ed)/2e2 ©)
For the BLPF,
Hip (w1, w) = ! (10)

1+ [\/m /wc] *

where w, is cut-off angular frequency and set to /2, and k
denotes the filter order with a value of 1. Finally, the im-
pulse response of the LPF is determined by the inverse Fourier
transform, which converts it into a spatial domain image for
each scenario. After creating the impulse response of LPF,
a skip connection is utilized by fusing the raw underwater
image and the impulse response of LPF within each Con-
vBlock. Thus, the difference between Shallow-UWnet and
the proposed method is the number of features in the last Conv
layer of each ConvBlock. In detail, Shallow-UWnet employs
61 features, whereas the proposed method uses 58 features.
SimAM with limited image datasets impacts the generaliza-
tion ability. As shown in Fig. 2(b), the proposed method
also incorporates the SimAM into each of the ConvBlocks,
thereby providing a powerful feature extraction ability.

3.3. SimAM attention module

Currently, the attention module can easily enhance the back-
bone network’s ability to highlight valuable information while
suppressing irrelevant information. Conventional attention
modules such as squeeze and excitation (SE), coordinate at-
tention (CA) and efficient channel attention (ECA) require
an additional subnetwork structure. Furthermore, current
attention modules are limited in either channel or spatial di-
mensions and built with complex factors such as pooling,
which can increase the network’s computational complex-
ity. To tackle these issues, SImAM [16], a non-parametric
attention mechanism, was introduced in 2021. SimAM is an
energy-based attention mechanism capable of generating 3D
weights. According to neuroscience theory, the lower energy
neuron, which is the most separable from neighboring neu-
rons, is the most significant. The minimum energy neuron e
is calculated as

4(p* + )
T —n)? 4+ 2p% + 2

r =7 an
where 7' is the target neuron and e represents the lower en-
ergy of neuron 7', n is determined as the mean of neurons,
expressed as n = % Zf\il y;» and p? is the variance of neu-

rons, computed as p=+ Zfil (y; —n)®. The y; denotes

Fig. 3 Power spectrum sparsity of image

other neurons within a single channel. Then, ¢ denotes the
spatial dimension, /N represents the total number of neurons,
and « is a hyper-parameter coefficient set to 0.0001 [16]. Fi-
nally, the SimAM can be compromised as

= . . 1
Y = sigmoid <E> @Y (12)

where the total energy function of er is denoted as E and (©)
indicates dot product operation and Y and Y represent the
refined and original features, respectively [16].

4. EXPERIMENTAL RESULTS

4.1. Implementation details

The proposed model is trained using the ADAM optimizer
with a learning rate of 0.0002 and layer dropout of 0.2, a batch
size of 1, and 50 epochs, which is conducted in the same con-
figuration as Shallow-UWnet. The input images are resized to
256x256. The model employs the PyTorch framework and is
trained on an Intel Core 19 CPU, Nvidia GeForce RTX 4070,
and 32GB of RAM.

4.2. Datasets

Currently, there are available paired real-world underwater
image datasets [17][18] like EUVP [6], UFO-120 [8], and
UIEB [5]. The images in the EUVP [6] dataset were taken
with seven distinct cameras during deep-sea exploration and
human-robot studies [19]. In this experiment, we utilized
3500 pairs of images from EUVP-ImageNet [6] for the train-
ing, while the remaining 200 image pairs were used for val-
idation. The testing datasets are as follows. EUVP-Dark [6]
dataset includes 5,500 paired images that capture dark-hazed
underwater scenes. For testing, 1000 images were used in ac-
cordance with Shallow-UWnet model. UFO-120 dataset cap-
tures high-quality images during oceanic explorations. Dis-
torted images in UFO-120 dataset were created using style
transfer, and 120 paired images were utilized as a benchmark
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Table 1 Quantitative comparisons (PSNR, SSIM, and UIQM) on EUVP-Dark, UFO-120, and UIEB datasets [Bold: Best,

Underline: Second best]

Dataset
Method EUVP-Dark UFO-120 UIEB
PSNR SSIM UIQM PSNR SSIM UiQM PSNR SSIM UIQM
WaterNet[5] 24.4344.6 | 0.82+0.08 | 2.9740.32 | 23.12£3.3 | 0.73+£0.07 | 2.94£0.38 | 19.11+£3.7 | 0.7940.09 | 3.02+0.34
FUnIE-GAN [6] 26.1942.9 | 0.8240.08 | 2.84+0.45 | 24.72+2.6 | 0.74+0.06 | 2.88+0.41 | 19.13+£3.9 | 0.73£0.11 | 2.99+0.39
UGAN [7] 26.53+3.1 | 0.8040.05 | 2.89+0.43 | 24.23+3.0 | 0.6940.07 | 2.54+0.45 - - -
DeepSESR [8] 25.3042.6 | 0.81£0.07 | 2.954+0.32 | 26.46£3.1 | 0.78+0.07 | 2.98+0.37 | 19.26+3.6 | 0.734+0.11 | 2.95+0.39

iDehaze [9] 23.01£2.0 | 0.8440.09 | 3.11£0.36

17.55£1.9 | 0.724+0.07 | 3.29+0.26

17.96£2.8 | 0.80+0.07 | 3.28+0.33

MDCNN-VGG [10] 27.49 0.82 3.0

25.27

0.74 2.88 19.09 0.75 2.80

Xing et.al [12]

33.4514.2 | 0.89:0.09 | 2.9810.37 | 24.35+3.0 | 0.7240.08 | 2.85+0.37

19.71+4.0 | 0.71£0.13 | 2.71+0.45

Shallow-RepNet [13]

24.49£2.5| 0.7940.06 | 2.82£0.29 | 22.32+2.4 | 0.724+0.07 | 2.98+0.33

19.80+2.8 | 0.77£0.08 | 2.79+0.32

Shallow-UWnet [11] | 27.86+3.1 | 0.854+0.04 | 2.93£0.40 | 25.07+2.9 | 0.74+£0.08 | 2.87+0.39 | 19.01+£3.6 | 0.68+0.14 | 2.794+0.44
Proposed (SLPF) | 27.87+3.0 | 0.84+0.05 | 2.96+0.36 | 25.274+2.8 | 0.73+0.08 | 2.904+0.36 | 19.14+3.7 | 0.69+0.13 | 2.8440.41
Proposed (DLPF) | 27.8943.1 | 0.84+£0.05 | 2.98+0.35 | 25.23+2.9 | 0.73+£0.08 | 2.91+0.36 | 19.17£3.6 | 0.69+0.13 | 2.85+0.41
Proposed (GLPF) | 27.8743.0 | 0.85£0.05 | 2.9540.37 | 25.254+2.9 | 0.74+0.08 | 2.894+0.37 | 19.08£3.6 | 0.6910.13 | 2.82+0.42
Proposed (BLPF) | 27.77£3.0 | 0.8440.05 | 2.96+0.35 | 25.22£2.9 | 0.734+0.08 | 2.90£0.36 | 19.10£3.6 | 0.68+0.13 | 2.83£0.41

Table 2 Performance metrics of model lightweight [Bold:
Best, Underline: Second best]

Metrics Number of Testing per
parameters image (sec)
WaterNet [5] 1,090,688 0.5
FUnIE-GAN [6] 4,212,707 0.18
Deep SESR [8] 2,454,023 0.16
Xing et.al [12] 219,840 0.02
Shallow-UWnet [11] 219,456 0.04
Proposed (SLPF) 216,000 0.05
Proposed (DLPF) 216,000 0.2
Proposed (GLPF) 216,000 0.3
Proposed (BLPF) 216,000 0.3

to evaluate testing datasets. The UIEB dataset includes a col-
lection of 890 real underwater images. The dataset comprises
a variety of distortion levels and different light conditions,
with a range of colors and contrast levels [20]. The reference
images in UIEB dataset are free from color casts and display
accurate colors.

4.3. Evaluation metrics

PSNR and SSIM evaluate the difference between underwater
and reference images. Since obtaining perfect and ideal un-
derwater images for evaluating underwater images is imprac-
tical, a non-reference image quality measure becomes neces-
sary. The UIQM [17] is a non-reference underwater image
quality measure inspired by the human visual system, which
is defined by

UIQM = ci;xUICM4coxUISM+c3xUIConM (13)

where UICM, UISM, and UIConM represent image col-
orfulness, sharpness, and contrast, respectively, and the pa-
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rameters are set to ¢y = 0.028, ¢ = 0.2953, and c¢3 = 3.5753
[17] [21]. A higher UIQM value indicates that the resulting
images have high color saturation and contrast and are closely
similar to human visual perception [22][23].

4.4. Experiment evaluation

The performance of the proposed method is compared with
that of the conventional Shallow-UWnet [11] and SOTA
models such as WaterNet [5], FUnIE-GAN [6], UGAN [7],
DeepSESR [8], iDehaze [9], MDCNN-VGG [10], Xing et.al
[12] and Shallow-RepNet [13], as shown in Table 1. It is
observed that, in comparison with Shallow-UWnet, the pro-
posed method achieves superior PSNR and UIQM results.
This indicates that the proposed method effectively distin-
guishes image information from noise in underwater images
compared with Shallow-UWnet. Consequently, the proposed
method has improved image clarity and provided more accu-
rate colors than the Shallow-UWnet. In comparison to Xing
et al. [12], the proposed method outperforms in terms of
UIQM on UFO-120 and UIEB datasets.

In more detail in Table 1, Xing et al. [12], Shallow-
UWnet [11], and the proposed method, when trained on the
EUVP dataset, have superior performance compared with
other models on the EUVP-Dark dataset. Similar patterns are
observed in DeepSESR [8], when trained on the UFO-120
dataset, outperforms the UFO-120 dataset case, and Water-
Net [5], trained on the UIEB dataset, has better performance
on the UIEB dataset. However, it is observed that the pro-
posed method achieves comparable performance results on
the UFO-120 and UIEB datasets, even though it was not
trained on them. Furthermore, it is the second-best option
in terms of PSNR and SSIM results on the EUVP-Dark and
UFO-120 datasets. Then, the proposed method performs
better than the GAN-based models such as FUnIE-GAN [6]
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and UGAN [7] on the EUVP-Dark and UFO-120 datasets.
The two-step pipeline model, iDehaze [9], achieves superior
UIQM scores, but it has the lowest PSNR results in compari-
son with others. Finally, although the proposed method does
not perform superior to others, it achieves comparable results
across all three datasets, as shown in Table 1. As shown in
Table 2, the proposed method has fewer trainable parame-
ters when evaluating the model’s performance than others.
Consequently, the proposed method with a smaller number of
trainable parameters is suitable for underwater AUV and ROV
devices with limited computing power. Other SOTA methods,
such as iDehaze [9] and MDCNN-VGG [10], do not highlight
their efficiency in terms of being lightweight. Undoubtedly,
the deeper architectures in iDehaze and MDCNN-VGG re-
sult in a larger number of parameters compared with others.
Regarding testing time, Xing et al. [12] outperforms other
methods. Nevertheless, the proposed method, utilizing the
impulse response of SLPF, is also suitable for real-time un-
derwater image enhancement.

In Fig. 4, a visual comparison of the proposed method
with the impulse response of SLPF, WaterNet [5], FUnlIE-
GAN [6], and Shallow-UWnet [11] is shown where in each
image the resulting PSNR is also shown. In each dataset, the
raw input images and reference images for ground truth are
provided for visual comparison. We have the following ob-
servations.

(1) EUVP-Dark Dataset : WaterNet has artificial colors
and noise artifacts in both blue and green-hued images com-
pared with the proposed method. In comparison with the
FUnIE-GAN, there are incorrect color corrections, especially
noticeable in the fin of the fish image. Conversely, Shallow-
UWnet and the proposed method have a noticeable effect on

restoring color, contrast improvement, and image sharpening.

(2) UFO-120 Dataset: WaterNet suffers from pixel infor-
mation loss and the inability to rectify the green-colored hue
in images, whereas FUInIE-GAN encounters oversaturation
issues. In contrast, Shallow-UWnet and the proposed method
perform well in enhancing images compared with others.

(3) UIEB Dataset: The results from WaterNet have noise
artifacts and gray-tone color images on the UIEB dataset.
While FUnIE-GAN has some effectiveness in color restora-
tion, noise artifacts from scattering problems remain. In both
Shallow-UWnet and the proposed method, there is a correc-
tion of the color cast to the ground truth image, resulting in
superior visual effects compared with others, except for hazy
images. In Shallow-UWnet and the proposed method, there is
overcontrast with a reddish hue in heavy hazy regions. Nev-
ertheless, the proposed method enhances color and higher
PSNR values compared with Shallow-UWnet.

5. CONCLUSION

In this paper, we proposed a lightweight and compressed
model for underwater image enhancement. The proposed
method integrates the SimAM and the skip connection, which
incorporates both the raw underwater image and the impulse
response of LPF in the conventional Shallow-UWnet. It
achieves better generalization ability for unseen features and
enhances performance compared to using either approach
separately. Subsequently, the proposed method outperforms
the conventional Shallow-UWnet in terms of PSNR and
UIQM metrics, with fewer trainable parameters and faster
testing time. It could be employed in real-time applications,
specifically for resource-constrained underwater robots.
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