

Lightweight Underwater Image Enhancement via Impulse Response of Low-Pass Filter based Attention Network

May Thet Tun, Yosuke Sugiura, Tetsuya Shimamura Graduate School of Science and Engineering, Saitama, Japan

2024 IEEE International Conference on Image Processing (ICIP)

Conclusion

Introduction

- Decline in underwater image quality has constrained the accurate visual for diverse ocean engineering and scientific research.
- Image quality affects object classification, saliency detection, marine monitoring, and target detection.
- Key challenges: light intensity, scattering, and turbidity in underwater environments.

Impact of Scattering & Absorption

- Scattering and absorption reduce contrast and cause color distortion.
- Scattering: Particles like solids, plankton, and dust disperse light.
- Absorption: Higher for red light, giving images a blue-green tone.

Fig 1. Schematic diagram of underwater imaging

Existing Approaches to Underwater Image Enhancement

Enhancement methods classified into:

- Non-physical model-based 1.
- 2. Physical model-based
- 3. Data-driven

Specialized Models for Underwater Image Enhancement

- **Deep SESR**: Improves super-resolution using dense blocks and attention networks.
- iDehaze: Two-step approach for dehazing and color correction.
- **MDCNN-VGG**: Adapts to multi-domain underwater images but faces issues with detail preservation.
- **Shallow-UWnet** : Lightweight model with fewer parameters and faster computation and suited for portable AUVs due to low resource demands. Then, it improved color correction with reduced testing time.

Objectives

- \checkmark To enhance poor visibility caused by light attenuation, absorption, and scattering.
- \checkmark To reduce noise caused by suspended particles in underwater environments.
- \checkmark To create a lightweight model suitable for energy-limited AUVs and ROVs.
- \checkmark To improve generalization ability across diverse underwater scenes.
- \checkmark To enhance image quality without adding computational overhead.

Contribution

✓ Skip Connection : To solve the vanishing gradient problem by concatenating raw underwater images with impulse response of low-pass filter images.

✓ Attention Module : Integrates a simple, parameter-free attention module (SimAM) into each convolution block to enhance the generalization ability of the model.

6

Methodology

Proposed Method

Proposed Method

The impulse response of power spectrum sparsity low-pass filter (SLPF) is constructed by:

✓ Compute power spectrum

 $P(\omega_1, \omega_2) = |X(\omega_1, \omega_2)|^2$

where $X(\omega_1, \omega_2)$ is the Fourier transform of image.

✓ Calculate power spectrum sparsity S = $\frac{P_a}{P_b + P_m}$

Where:

 P_a = Overall power spectrum values

= Horizontal power spectrum values at the center \mathbf{P}_{h}

= Vertical power spectrum values at the center P_{12}

Fig 3. Power spectrum sparsity of image

Proposed Method

 \checkmark Set Threshold $\gamma = \lambda S$

where λ is a scaling parameter.

✓ Design frequency response, $H_S(\omega_1, \omega_2)$:

$$H_{s}(\omega_{1},\omega_{1}) = \begin{cases} 1, & \text{if } H_{s}(\omega_{1},\omega_{1}) \\ 0, & \text{other} \end{cases}$$

 \checkmark Compute inverse Fourier transform (IFFT) of H_S (ω 1, ω 2) to obtain the spatial domain image.

SimAM (Simple, parameter- free attention module)

 \checkmark A non-parametric, energy-based attention mechanism that generates 3D weights. The minimum energy neuron is calculated as :

$$\epsilon_T = \frac{4(\rho^2 + \alpha)}{(T - \eta)^2 + 2\rho^2 + 2\alpha}$$

Where T is the target neuron, ϵ_T represents the lower energy neuron, η and ρ^2 is the mean and variance of neurons.

$$) \leq \gamma$$

cwise

Proposed Model Training Configuration

Training Settings

- Optimizer: ADAM optimizer with a learning rate of 0.0002. ${\color{black}\bullet}$
- Dropout Rate: 0.2 to prevent overfitting. •
- Batch Size: 1, with 50 epochs to ensure thorough training. •
- Input Image Size: Resized to 256×256 pixels for consistency.

Framework & Hardware

- Framework: Model is developed in PyTorch. •
- Hardware: Trained on Intel Core i9 CPU, Nvidia GeForce RTX 4070 GPU, and 32GB RAM. •

Dataset Information

- 1. EUVP Dataset: Contains images from seven distinct cameras used in deep-sea exploration and humanrobot studies. Utilized 3,500 image pairs for training and 200 pairs for validation. EUVP-Dark used as a testing dataset, capturing 1,000 dark-hazed images for evaluating model performance on challenging visibility conditions.
- 2. UIEB Dataset: Contains 890 real-world underwater images with varied distortion, light conditions, colors, and contrast levels. Reference images are color-accurate and free from color casts.
- **3.** UFO-120 Dataset: High-quality images from oceanic exploration, with distorted images created through style transfer. Provides 120 paired images as a benchmark for enhancement tasks.

Image Quality Assessment (IQA)

Reference IQA

- **PSNR** (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) assess the difference between enhanced underwater images and their reference images.
- Obtaining ideal reference images for underwater conditions is impractical. \bullet

Non-Reference IQA

- UIQM (Underwater Image Quality Measure): Designed to evaluate image quality without needing reference images, inspired by human visual perception.
- Higher UIQM values indicate images with better color saturation, contrast, and overall similarity to human \bullet visual perception, making it a key metric for non-reference evaluation.

Table 1 : Quantitative comparisons (PSNR, SSIM and UIQM) on EUVP_Dark, UFO 120 and UIEB datasets [Bold : Best, Underline Second Best]

					Dataset				
Method		EUVP-Dark	UFO-120				UIEB		
	PSNR	SSIM	UIQM	PSNR	SSIM	UIQM	PSNR	SSIM	UIQM
WaterNet[5]	24.43±4.6	0.82 ± 0.08	2.97 ± 0.32	23.12 ± 3.3	0.73 ± 0.07	$2.94{\pm}0.38$	19.11±3.7	0.79 ± 0.09	3.02 ± 0.34
FUnIE-GAN [6]	26.19±2.9	0.82 ± 0.08	$2.84{\pm}0.45$	24.72±2.6	0.74 ± 0.06	2.88 ± 0.41	19.13±3.9	0.73 ± 0.11	2.99 ± 0.39
UGAN [7]	26.53±3.1	0.80 ± 0.05	2.89 ± 0.43	24.23 ± 3.0	0.69 ± 0.07	$2.54{\pm}0.45$	-	-	-
DeepSESR [8]	$25.30{\pm}2.6$	$0.81 {\pm} 0.07$	2.95 ± 0.32	26.46±3.1	$0.78 {\pm} 0.07$	2.98 ± 0.37	19.26 ± 3.6	0.73 ± 0.11	2.95 ± 0.39
iDehaze [9]	23.01 ± 2.0	$0.84{\pm}0.09$	3.11±0.36	17.55±1.9	0.72 ± 0.07	$3.29{\pm}0.26$	17.96 ± 2.8	$0.80{\pm}0.07$	3.28±0.33
MDCNN-VGG [10]	27.49	0.82	3.0	25.27	0.74	2.88	19.09	0.75	2.80
Xing et.al [12]	33.45±4.2	$0.89 {\pm} 0.09$	2.98 ± 0.37	24.35 ± 3.0	0.72 ± 0.08	2.85 ± 0.37	19.71 ± 4.0	0.71 ± 0.13	2.71 ± 0.45
Shallow-RepNet [13]	24.49 ± 2.5	0.79 ± 0.06	2.82 ± 0.29	22.32±2.4	0.72 ± 0.07	2.98 ± 0.33	$19.80{\pm}2.8$	0.77 ± 0.08	2.79 ± 0.32
Shallow-UWnet [11]	27.86±3.1	0.85 ± 0.04	2.93 ± 0.40	25.07±2.9	0.74 ± 0.08	2.87 ± 0.39	19.01±3.6	0.68 ± 0.14	2.79 ± 0.44
Proposed (SLPF)	27.87±3.0	$0.84{\pm}0.05$	2.96 ± 0.36	25.27 ± 2.8	0.73 ± 0.08	$2.90{\pm}0.36$	19.14 ± 3.7	0.69 ± 0.13	2.84 ± 0.41
Proposed (DLPF)	27.89 ± 3.1	0.84 ± 0.05	2.98 ± 0.35	25.23±2.9	0.73 ± 0.08	2.91 ± 0.36	19.17±3.6	0.69 ± 0.13	2.85 ± 0.41
Proposed (GLPF)	27.87±3.0	0.85 ± 0.05	2.95 ± 0.37	25.25 ± 2.9	0.74 ± 0.08	2.89 ± 0.37	19.08 ± 3.6	0.69 ± 0.13	2.82 ± 0.42
Proposed (BLPF)	27.77±3.0	0.84 ± 0.05	2.96 ± 0.35	25.22±2.9	0.73 ± 0.08	2.90 ± 0.36	19.10±3.6	0.68 ± 0.13	2.83 ± 0.41

15

Table 2 : Performance metrics of model *lightweight* [Bold : Best, Underline : Second Best]

Metrics	Number of parameters	Testing per image (sec)	
WaterNet [5]	1,090,688	0.5	
FUnIE-GAN [6]	4,212,707	0.18	
Deep SESR [8]	2,454,023	0.16	
Xing et.al [12]	219,840	0.02	
Shallow-UWnet [11]	219,456	0.04	
Proposed (SLPF)	216,000	0.05	
Proposed (DLPF)	216,000	0.2	
Proposed (GLPF)	216,000	0.3	
Proposed (BLPF)	216,000	0.3	

EUVP-Dark

UFO-120

Fig 4. Comparison of different methods on the EUVP_Dark, UFO_120, and UIEB datasets [from top to bottom] Raw Input Image, WaterNet, FUnIE-GAN, Shallow-UWnet , Proposed method (SLPF) and Ground Truth

UIEB

Conclusion

- Developed a lightweight, compressed model for underwater image enhancement. lacksquare
- Integrated SimAM (Simple Attention Mechanism) and skip connections to combine the raw underwater image lacksquarewith the impulse response of LPF (Low-Pass Filter), enhancing the conventional Shallow-UWnet architecture.

Key Benefits:

- Better adaptability to unseen underwater features by combining SimAM and skip connections. •
- Outperforms Shallow-UWnet in PSNR and UIQM metrics. •
- Achieves high-quality enhancement with fewer trainable parameters and faster processing, making it suitable for • real-time applications.
- Ideal for deployment on resource-constrained underwater robots in real-time exploration. ${\bullet}$

