

Lightweight Underwater Image Enhancement via Impulse Response of Low-Pass Filter based Attention Network

May Thet Tun, Yosuke Sugiura, Tetsuya Shimamura 1*Graduate School of Science and Engineering, Saitama, Japan*

2024 IEEE International Conference on Image Processing (ICIP)

Conclusion

- 3 ■ Scattering and absorption reduce contrast and cause color distortion.
- Scattering: Particles like solids, plankton, and dust disperse light.
- Absorption: Higher for red light, giving images a blue-green tone.

Introduction

- Decline in underwater image quality has constrained the accurate visual for diverse ocean engineering and scientific research.
- Image quality affects object classification, saliency detection, marine monitoring, and target detection.
- Key challenges: light intensity, scattering, and turbidity in underwater environments.

Fig 1. Schematic diagram of underwater imaging

Impact of Scattering & Absorption

Existing Approaches to Underwater Image Enhancement

Enhancement methods classified into:

- 1. Non-physical model-based
- 2. Physical model-based
- 3. Data-driven

Specialized Models for Underwater Image Enhancement

- **Deep SESR:** Improves super-resolution using dense blocks and attention networks.
- 4 **iDehaze**: Two-step approach for dehazing and color correction.
- **MDCNN-VGG**: Adapts to multi-domain underwater images but faces issues with detail preservation.
- **Shallow-UWnet** : Lightweight model with fewer parameters and faster computation and suited for portable AUVs due to low resource demands. Then, it improved color correction with reduced testing time.

Objectives

- \checkmark To enhance poor visibility caused by light attenuation, absorption, and scattering.
- \checkmark To reduce noise caused by suspended particles in underwater environments.
- \checkmark To create a lightweight model suitable for energy-limited AUVs and ROVs.
- \checkmark To improve generalization ability across diverse underwater scenes.
- 5 ✓To enhance image quality without adding computational overhead.

-
-

Contribution

6

✓**Skip Connection** : To solve the vanishing gradient problem by concatenating raw underwater images with impulse response of low-pass filter images.

✓**Attention Module** : Integrates a simple, parameter-free attention module (SimAM) into each convolution block to enhance the generalization ability of the model.

Methodology

Proposed Method

Proposed Method

The impulse response of power spectrum sparsity low-pass filter (SLPF) is constructed by:

 \checkmark Compute power spectrum

 $P(\omega_1, \omega_2) = |X(\omega_1, \omega_2)|^2$

where $X(\omega_1, \omega_2)$ is the Fourier transform of image.

 \checkmark Calculate power spectrum sparsity S = P_a P_h + P_v

Where:

 P_a = Overall power spectrum values

 P_h = Horizontal power spectrum values at the center

 P_v = Vertical power spectrum values at the center *Fig 3. Power spectrum sparsity of image*

$$
H_s(\omega_1, \omega_1) = \begin{cases} 1, & \text{if } H_s(\omega_1, \omega_1) \le \gamma \\ 0, & \text{otherwise} \end{cases}
$$

 \checkmark Compute inverse Fourier transform (IFFT) of H_S (ω1, ω2) to obtain the spatial domain image.

10 **SimAM (Simple, parameter- free attention module)**

 \checkmark A non-parametric, energy-based attention mechanism that generates 3D weights. The minimum energy neuron is calculated as :

Where T is the target neuron, ϵ_T represents the lower energy neuron, η and ρ^2 is the mean and variance of neurons.

$$
)\leq \gamma
$$

 wise

$$
\epsilon_T = \frac{4(\rho^2 + \alpha)}{(T - \eta)^2 + 2\rho^2 + 2\alpha}
$$

Proposed Method

 $\sqrt{\text{Set}}$ Threshold $\gamma = \lambda S$

where λ is a scaling parameter.

 \checkmark Design frequency response, H_S (ω_1 , ω_2):

Proposed Model Training Configuration

Training Settings

- Optimizer: ADAM optimizer with a learning rate of 0.0002.
- Dropout Rate: 0.2 to prevent overfitting.
- Batch Size: 1, with 50 epochs to ensure thorough training.
- Input Image Size: Resized to 256×256 pixels for consistency.

- 12 • Framework: Model is developed in PyTorch.
- Hardware: Trained on Intel Core i9 CPU, Nvidia GeForce RTX 4070 GPU, and 32GB RAM.

Framework & Hardware

Dataset Information

13

- **1. EUVP Dataset**: Contains images from seven distinct cameras used in deep-sea exploration and humanrobot studies. Utilized 3,500 image pairs for training and 200 pairs for validation. EUVP-Dark used as a testing dataset, capturing 1,000 dark-hazed images for evaluating model performance on challenging visibility conditions.
- **2. UIEB Dataset:** Contains 890 real-world underwater images with varied distortion, light conditions, colors, and contrast levels. Reference images are color-accurate and free from color casts.
- **3. UFO-120 Dataset**: High-quality images from oceanic exploration, with distorted images created through style transfer. Provides 120 paired images as a benchmark for enhancement tasks.

Image Quality Assessment (IQA)

Reference IQA

- **PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index)** assess the difference between enhanced underwater images and their reference images.
- Obtaining ideal reference images for underwater conditions is impractical.

Non-Reference IQA

- reference images, inspired by human visual perception. • **UIQM (Underwater Image Quality Measure):** Designed to evaluate image quality without needing
- Higher UIQM values indicate images with better color saturation, contrast, and overall similarity to human visual perception, making it a key metric for non-reference evaluation.

15

Table 1 : Quantitative comparisons (PSNR, SSIM and UIQM) on EUVP_Dark, UFO_120 and UIEB datasets [Bold : Best, Underline Second Best]

Experimental Results

Table 2 : Performance metrics of model lightweight [Bold : Best, Underline : Second Best]

EUVP-Dark

UFO-120

Fig 4. Comparison of different methods on the EUVP_Dark, UFO_120, and UIEB datasets [from top to bottom] Raw Input Image, WaterNet, FUnIE-GAN, Shallow-UWnet , Proposed method (SLPF) and Ground Truth

UIEB

Conclusion

- Developed a lightweight, compressed model for underwater image enhancement.
- Integrated SimAM (Simple Attention Mechanism) and skip connections to combine the raw underwater image with the impulse response of LPF (Low-Pass Filter), enhancing the conventional Shallow-UWnet architecture.

Key Benefits:

- Better adaptability to unseen underwater features by combining SimAM and skip connections.
- Outperforms Shallow-UWnet in PSNR and UIQM metrics.
- 18 • Achieves high-quality enhancement with fewer trainable parameters and faster processing, making it suitable for real-time applications.
- Ideal for deployment on resource-constrained underwater robots in real-time exploration.

