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Introduction |C|p
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= Decline In underwater image quality has constrained the accurate visual for diverse ocean engineering and
scientific research.
* Image quality affects object classification, saliency detection, marine monitoring, and target detection.

= Key challenges: light intensity, scattering, and turbidity in underwater environments.
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= Scattering and absorption reduce contrast and cause color distortion. "™ W""“‘““—‘Tm
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= Scattering: Particles like solids, plankton, and dust disperse light. * "“”"“f“«. :
] S ,
= Absorption: Higher for red light, giving images a blue-green tone. T - o Mfﬂ
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Fig 1. Schematic diagram of underwater imaging



Existing Approaches to Underwater ICI P
Image Enhancement

Enhancement methods classified into:
1.  Non-physical model-based
2. Physical model-based

3. Data-driven
Specialized Models for Underwater Image Enhancement
= Deep SESR: Improves super-resolution using dense blocks and attention networks.
» |Dehaze: Two-step approach for dehazing and color correction.
= MDCNN-VGG: Adapts to multi-domain underwater images but faces issues with detail preservation.
= Shallow-UWnet : Lightweight model with fewer parameters and faster computation and suited for portable

AUV:s due to low resource demands. Then, it improved color correction with reduced testing time.
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v"To enhance poor visibility caused by light attenuation, absorption, and scattering.
v"To reduce noise caused by suspended particles in underwater environments.

v'To create a lightweight model suitable for energy-limited AUVs and ROVSs.

v'To improve generalization ability across diverse underwater scenes.

v"To enhance image quality without adding computational overhead.
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v'Skip Connection : To solve the vanishing gradient problem by concatenating raw underwater

Images with impulse response of low-pass filter images.

v’ Attention Module : Integrates a simple, parameter-free attention module (SimAM) into each

convolution block to enhance the generalization ability of the model.
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Proposed Method
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The impulse response of power spectrum sparsity low-pass filter (SLPF) is constructed by:

v'Compute power spectrum

P(wy, wy) = |X(w1»w2)|2

where X(wq, w,) Is the Fourier transform of image.

Pg

v'Calculate power spectrum sparsity S = ——
h %

Where:
P, = Overall power spectrum values

Pp,
P,

Horizontal power spectrum values at the center
Vertical power spectrum values at the center

P, . .
Fig 3. Power spectrum sparsity of image
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v'Set Threshold y = AS
where A Is a scaling parameter.
v'Design frequency response, Hg (w4, w-):

1, if Ho(wy, wy) <Y

Ho(wq,wq{) = 5 ,
s(@1, 1) 0, otherwise

\
v'Compute inverse Fourier transform (IFFT) of Hg (w1, w2) to obtain the spatial domain image.

SImMAM ( Simple, parameter- free attention module)
v A non-parametric, energy-based attention mechanism that generates 3D weights. The minimum energy
neuron Is calculated as :
4(p* + a)
T = (T —n)?+2p? + 2«
Where T is the target neuron, e represents the lower energy neuron , n and p? is the mean and variance of
neurons.




I C I /v"' \{'
abu dhabi Iaoeq o W= 5

Experimental Results
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Training Settings

* Optimizer: ADAM optimizer with a learning rate of 0.0002.

* Dropout Rate: 0.2 to prevent overfitting.

« Batch Size: 1, with 50 epochs to ensure thorough training.

* Input Image Size: Resized to 256x256 pixels for consistency.

Framework & Hardware
* Framework: Model is developed In PyTorch.lz
 Hardware: Trained on Intel Core 19 CPU, Nvidia GeForce RTX 4070 GPU, and 32GB RAM.
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1. EUVP Dataset: Contains images from seven distinct cameras used in deep-sea exploration and human-
robot studies. Utilized 3,500 image pairs for training and 200 pairs for validation. EUVP-Dark used as a

testing dataset, capturing 1,000 dark-hazed images for evaluating model performance on challenging

visibility conditions.

2. UIEB Dataset: Contains 890 real-world underwater images with varied distortion, light conditions, colors,

and contrast levels. Reference images are color-accurate and free from color casts.

13

3. UFO-120 Dataset: High-quality images from oceanic exploration, with distorted images created through

style transfer. Provides 120 paired images as a benchmark for enhancement tasks.
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Reference IQA

« PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) assess the difference

between enhanced underwater images and their reference images.
* Obtaining ideal reference images for underwater conditions is impractical.
Non-Reference 1QA

 UIQOM (Underwater Image Quality Measure): Designed to evaluate image quality without needing

reference images, inspired by human visual perception.

» Higher UIQM values indicate images with better color saturation, contrast, and overall similarity to human

visual perception, making it a key metric for non-reference evaluation.
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Table 1 : Quantitative comparisons (PSNR, SSIM and UIQM) on EUVP_Dark,
UFO 120 and UIEB datasets [ Bold : Best, Underline Second Best]

Dataset
Method EUVP-Dark UFO-120 UIEB
PSNR SSIM UIQM PSNR SSIM UIQM PSNR SSIM UIQM

WaterNet| 3] 24.4314.6 | 0.820.08 | 2.970.32 | 23.124£3.53 | 0.73£0.07 | 2.9410.38 | 19.11£3.7 | 0.79£0.09 | 3.02+£0.34
FUnlE-GAN [6] | 26.1912.9 [ 0.82+0.08 | 2.84+0.45 | 24.72£2.6 | 0.74£0.06 | 2.88+£0.41 | 19.13£3.9 | 0.73£0.11 | 2.99£0.39
UGAN [7] 26.5313.1 | 0.800.05 | 2.89+0.43 | 24.23£3.0 | 0.69£0.07 | 2.5410.45 - - -
DeepSESR [8] 25.30£2.6 | 0.810.07 | 2.9510.32 | 26.46+3.1 | 0.7810.07 | 2.9840.37 | 19.26%3.6 | 0.73£0.11 | 2.95£0.39
1Dehaze |9] 23.01£2.0 | 0.84=0.09 | 3.110.36 | 17.55£1.9 | 0.72£0.07 | 3.29+0.26 | 17.96%2.8 | 0.80£0.07 | 3.280.33

MDCNN-VGG [10] | 27.49 (.82 3.0 25.27 0.74 2.88 19.09 0.75 2.80

Xing et.al [12 33.45+4.2 | 0.89+0.09 | 2.98+0.37 | 24.3543.0 | 0.72+0.08 | 2.85£0. 1? 19.71£4.0 | 0.71£0.13 | 2.7120.45
Shallow-RepNet | 13] | 24.49+2.5 | 0.790.06 | 2.82+0.29 | 22.32+2.4 | 0.72£0.07 | 2.9840.35 | 19.80+2.8 | 0.77£0.08 | 2.79£0.32
Shallow-UWnet [11] | 27.86£3.1 | 0.85£0.04 | 2.934+0.40 | 25.07+2.9 | 0.74£0.08 | 2.87%0.: 9 19.01£3.6 | 0.6840.14 | 2.7910.4

Proposed (SLPF) | 27.8743.0 | 0.84%0.05 | 2.960.36 | 25.27x£2.8 | 0.73£0.08 | 2.90£0.36 | 19.14£3.7 | 0.69£0.13 | 2.84£04

Proposed (DLPF) | 27.8943.1 | 0.84£0.05 | 2.98+£0.35 | 25.23£2.9 | 0.73£0.08 | 2.91£0.36 | 19.17£3.6 | 0.69£0.13 | 2.85+0.4

Proposed (GLPF) | 27.87£3.0 | 0.8520.05 | 2.95£0.37 | 25.2512.9 | 0.74%0.08 | 2.89x0.37 | 19.08£3.6 | 0.69£0.13 | 2.82£0.42

Proposed (BLPF) | 27.77£3.0 | 0.84=0.05 | 2.960.35 | 25.22+2.9 | 0.730.08 | 2.900.36 | 19.1043.6 | 0.6810.13 | 2.830.41
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Table 2 : Performance metrics of model
lightweight [Bold : Best, Underline : Second Best]

s Number of Testing per
Metrics .
parameters image (sec)
WaterNet |3] 1.090,688 0.5
FUnIE-GAN [6] 4,212,707 0.18
Deep SESR [8] 2,454,023 0.16
Xing et.al [12] 219,840 0.02
Shallow-UWnet [11] 219.456 0.04
Proposed (SLPF) 216,000 0.03
Proposed (DLPF) 216,000 0.2
Proposed (GLPF) 216,000 0.3
Proposed (BLPF) 216,000 0.3
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Fig 4. Comparison of different methods on the EUVP_Dark, UFO_120, and UIEB datasets [ from top to bottom]
Raw Input Image, WaterNet, FUnlE-GAN, Shallow-UWnet , Proposed method (SLPF) and Ground Truth
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« Developed a lightweight, compressed model for underwater image enhancement.

* Integrated SIMAM (Simple Attention Mechanism) and skip connections to combine the raw underwater image

with the impulse response of LPF (Low-Pass Filter), enhancing the conventional Shallow-UWnet architecture.
Key Benefits:
» Better adaptability to unseen underwater features by combining SImAM and skip connections.
* Outperforms Shallow-UWnet in PSNR and UIQM metrics.

18

» Achieves high-quality enhancement with fewer trainable parameters and faster processing, making it suitable for

real-time applications.

 |deal for deployment on resource-constrained underwater robots in real-time exploration.
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