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Introduction
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▪ Decline in underwater image quality has constrained the accurate visual for diverse ocean engineering and

scientific research.

▪ Image quality affects object classification, saliency detection, marine monitoring, and target detection.

▪ Key challenges: light intensity, scattering, and turbidity in underwater environments.

Fig 1. Schematic diagram of underwater imaging

Impact of Scattering & Absorption

▪ Scattering and absorption reduce contrast and cause color distortion.

▪ Scattering: Particles like solids, plankton, and dust disperse light.

▪ Absorption: Higher for red light, giving images a blue-green tone.
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Existing Approaches to Underwater 

Image Enhancement

4

Enhancement methods classified into:

1. Non-physical model-based

2. Physical model-based

3. Data-driven

Specialized Models for Underwater Image Enhancement

▪ Deep SESR: Improves super-resolution using dense blocks and attention networks.

▪ iDehaze: Two-step approach for dehazing and color correction.

▪ MDCNN-VGG: Adapts to multi-domain underwater images but faces issues with detail preservation. 

▪ Shallow-UWnet : Lightweight model with fewer parameters and faster computation and suited for portable 

AUVs due to low resource demands. Then, it improved color correction with reduced testing time.
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Objectives
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✓To enhance poor visibility caused by light attenuation, absorption, and scattering.

✓To reduce noise caused by suspended particles in underwater environments.

✓To create a lightweight model suitable for energy-limited AUVs and ROVs.

✓To improve generalization ability across diverse underwater scenes.

✓To enhance image quality without adding computational overhead.
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Contribution
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✓Skip Connection : To solve the vanishing gradient problem by concatenating raw underwater

images with impulse response of low-pass filter images.

✓Attention Module : Integrates a simple, parameter-free attention module (SimAM) into each

convolution block to enhance the generalization ability of the model.



7

Methodology
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Proposed Method
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Proposed Method
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The impulse response of power spectrum sparsity low-pass filter (SLPF) is constructed by:

✓Compute power spectrum

𝑃(𝜔1, 𝜔2) = X(𝜔1, 𝜔2)
2

where X(𝜔1, 𝜔2) is the Fourier transform of image.

✓Calculate power spectrum sparsity S =
P𝑎

Ph +P𝑣

Where:

P𝑎 = Overall power spectrum values

Pℎ = Horizontal power spectrum values at the center

P𝑣 = Vertical power spectrum values at the center Fig 3. Power spectrum sparsity of image
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✓Set Threshold γ = λS

where λ is a scaling parameter.

✓Design frequency response, H𝑆 (𝜔1, 𝜔2):

𝐻𝑠 𝜔1, 𝜔1 = ቊ
1, 𝑖𝑓 𝐻𝑠 𝜔1, 𝜔1 ≤ γ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

✓Compute inverse Fourier transform (IFFT) of H𝑆 (ω1,ω2) to obtain the spatial domain image.

SimAM ( Simple, parameter- free attention module)

✓A non-parametric, energy-based attention mechanism that generates 3D weights. The minimum energy

neuron is calculated as :

ϵ𝑇 =
4(𝜌2 + 𝛼 )

(𝑇 − 𝜂)2+2𝜌2 + 2𝛼

Where T is the target neuron, ϵ𝑇 represents the lower energy neuron , 𝜂 and 𝜌2 is the mean and variance of

neurons.

Proposed Method
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Experimental Results
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Proposed Model Training Configuration
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Training Settings

• Optimizer: ADAM optimizer with a learning rate of 0.0002.

• Dropout Rate: 0.2 to prevent overfitting.

• Batch Size: 1, with 50 epochs to ensure thorough training.

• Input Image Size: Resized to 256×256 pixels for consistency.

Framework & Hardware

• Framework: Model is developed in PyTorch.

• Hardware: Trained on Intel Core i9 CPU, Nvidia GeForce RTX 4070 GPU, and 32GB RAM.
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Dataset Information
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1. EUVP Dataset: Contains images from seven distinct cameras used in deep-sea exploration and human-

robot studies. Utilized 3,500 image pairs for training and 200 pairs for validation. EUVP-Dark used as a

testing dataset, capturing 1,000 dark-hazed images for evaluating model performance on challenging

visibility conditions.

2. UIEB Dataset: Contains 890 real-world underwater images with varied distortion, light conditions, colors,

and contrast levels. Reference images are color-accurate and free from color casts.

3. UFO-120 Dataset: High-quality images from oceanic exploration, with distorted images created through

style transfer. Provides 120 paired images as a benchmark for enhancement tasks.
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Image Quality Assessment (IQA)

14

Reference IQA

• PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) assess the difference

between enhanced underwater images and their reference images.

• Obtaining ideal reference images for underwater conditions is impractical.

Non-Reference IQA

• UIQM (Underwater Image Quality Measure): Designed to evaluate image quality without needing

reference images, inspired by human visual perception.

• Higher UIQM values indicate images with better color saturation, contrast, and overall similarity to human

visual perception, making it a key metric for non-reference evaluation.
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Table 1 : Quantitative comparisons (PSNR, SSIM and UIQM) on EUVP_Dark, 
UFO_120 and UIEB datasets [ Bold : Best, Underline Second Best]

Experimental Results
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Experimental Results

Table 2 : Performance metrics of model 
lightweight [Bold : Best, Underline : Second Best]
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Experimental Results

Fig 4. Comparison of different methods on the EUVP_Dark, UFO_120, and UIEB datasets [ from top to bottom] 
Raw Input Image, WaterNet, FUnIE-GAN, Shallow-UWnet , Proposed method (SLPF) and Ground Truth 
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Conclusion
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• Developed a lightweight, compressed model for underwater image enhancement.

• Integrated SimAM (Simple Attention Mechanism) and skip connections to combine the raw underwater image

with the impulse response of LPF (Low-Pass Filter), enhancing the conventional Shallow-UWnet architecture.

Key Benefits:

• Better adaptability to unseen underwater features by combining SimAM and skip connections.

• Outperforms Shallow-UWnet in PSNR and UIQM metrics.

• Achieves high-quality enhancement with fewer trainable parameters and faster processing, making it suitable for

real-time applications.

• Ideal for deployment on resource-constrained underwater robots in real-time exploration.
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Thank You19


