

IEEE International Conference on Image Processing

27 - 30 October 2024, Abu Dhabi, UAE

Lightweight Underwater Image Enhancement via Impulse Response of Low-Pass Filter based Attention Network

May Thet Tun, Yosuke Sugiura, Tetsuya Shimamura

Background

 Decline in underwater image quality has constrained the accurate visual for diverse ocean engineering and

Methodology

Results

Table 1 : Quantitative comparisons (PSNR, SSIM and UIQM) on EUVP_Dark, UFO_120 and UIEB datasets [Bold : Best, Underline : Second Best]

scientific research.

Fig 1. Schematic diagram of underwater imaging

Objectives

- To enhance poor visibility caused by light attenuation, absorption, and scattering.
- ✓ To reduce noise caused by suspended particles in underwater

Fig 2. Architectures of (a) Shallow_UWNet and (b) proposed method

The impulse response of power spectrum sparsity low-pass filter (SLPF) is constructed by:

	Dataset									
Method		EUVP-Dark			UFO-120			UIEB		
	PSNR	SSIM	UIQM	PSNR	SSIM	UIQM	PSNR	SSIM	UIQM	
WaterNet[5]	24.43±4.6	$0.82{\pm}0.08$	2.97±0.32	23.12±3.3	0.73±0.07	2.94±0.38	19.11±3.7	0.79 ± 0.09	3.02 ± 0.34	
FUnIE-GAN [6]	26.19±2.9	$0.82{\pm}0.08$	2.84±0.45	24.72±2.6	0.74±0.06	2.88±0.41	19.13±3.9	0.73±0.11	2.99±0.39	
UGAN [7]	26.53±3.1	0.80 ± 0.05	2.89±0.43	24.23±3.0	0.69 ± 0.07	2.54±0.45	-	-	-	
DeepSESR [8]	25.30±2.6	0.81±0.07	2.95 ± 0.32	26.46±3.1	$0.78 {\pm} 0.07$	2.98 ± 0.37	19.26±3.6	0.73±0.11	2.95±0.39	
iDehaze [9]	23.01±2.0	0.84±0.09	3.11±0.36	17.55±1.9	0.72 ± 0.07	3.29±0.26	17.96±2.8	$0.80{\pm}0.07$	3.28 ± 0.33	
MDCNN-VGG [10]	27.49	0.82	3.0	25.27	0.74	2.88	19.09	0.75	2.80	
Xing et.al [12]	33.45±4.2	0.89±0.09	2.98±0.37	24.35±3.0	0.72 ± 0.08	2.85±0.37	19.71±4.0	0.71±0.13	2.71±0.45	
Shallow-RepNet [13]	24.49±2.5	0.79±0.06	2.82±0.29	22.32±2.4	0.72 ± 0.07	2.98±0.33	$19.80{\pm}2.8$	0.77 ± 0.08	2.79±0.32	
Shallow-UWnet [11]	27.86±3.1	0.85 ± 0.04	2.93 ± 0.40	25.07±2.9	0.74 ± 0.08	2.87±0.39	19.01±3.6	0.68±0.14	2.79±0.44	
Proposed (SLPF)	27.87±3.0	$0.84{\pm}0.05$	2.96±0.36	25.27±2.8	0.73±0.08	2.90 ± 0.36	19.14±3.7	0.69±0.13	2.84±0.41	
Proposed (DLPF)	27.89±3.1	$0.84{\pm}0.05$	2.98±0.35	25.23±2.9	0.73±0.08	2.91±0.36	19.17±3.6	0.69±0.13	2.85±0.41	
Proposed (GLPF)	27.87±3.0	0.85 ± 0.05	2.95 ± 0.37	25.25±2.9	0.74 ± 0.08	2.89±0.37	19.08±3.6	0.69±0.13	2.82 ± 0.42	
Proposed (BLPF)	27.77±3.0	$0.84{\pm}0.05$	2.96±0.35	25.22±2.9	0.73±0.08	2.90 ± 0.36	19.10±3.6	0.68±0.13	2.83±0.41	

Table 2 : Performance metrics of model lightweight [Bold : Best, Underline : Second Best]

Metrics	Number of parameters	Testing per image (sec)	
WaterNet [5]	1,090,688	0.5	
FUnIE-GAN [6]	4,212,707	0.18	
Deep SESR [8]	2,454,023	0.16	
Xing et.al [12]	219,840	0.02	
Shallow-UWnet [11]	219,456	0.04	
Proposed (SLPF)	216,000	0.05	
Proposed (DLPF)	216,000	0.2	
Proposed (GLPF)	216,000	0.3	
Proposed (BLPF)	216,000	0.3	

environments.

- To create a lightweight model suitable for energy-limited AUVs and ROVs.
- To improve generalization ability across diverse underwater scenes.
- To enhance image quality without adding computational overhead.

Contributions

- **Skip Connection** : To solve the vanishing gradient problem by concatenating raw underwater images with impulse response of low-pass filter images.
- Attention Module : Integrates asimple, parameter-free attentionmodule (SimAM) into each

Compute power spectrum

 $P(\omega_1, \omega_2) = |X(\omega_1, \omega_2)|^2$

- where $X(\omega_1, \omega_2)$ is the Fourier transform of image.
- ✓ Calculate power spectrum sparsity $S = \frac{P_a}{P_h + P_v}$

Where:

- P_a = Overall power spectrum values
- P_h = Horizontal power spectrum values at the center
- P_{v} = Vertical power spectrum values at the center
- $\checkmark \quad \text{Set Threshold } \gamma = \lambda S$

where λ is a scaling parameter.

- $\begin{array}{l} \text{Design frequency response, } H_S(\omega_1, \omega_2): \\ H_S(\omega_1, \omega_1) = \begin{cases} 1, & \text{if } H_S(\omega_1, \omega_1) \leq \gamma \\ 0, & \text{otherwise} \end{cases} \end{array}$
- Compute inverse Fourier transform (IFFT) of $H_S(\omega 1, \omega 2)$ to obtain the spatial domain image.

SimAM (Simple, parameter-free attention module)

 ✓ A non-parametric, energy-based attention mechanism that generates 3D weights. The Fig 4. Comparison of different methods on the EUVP_Dark, UFO_120, and UIEB datasets [from top to bottom] Raw Input Image, WaterNet, FUnIE-GAN, Shallow-UWnet, Proposed method (SLPF) and Ground Truth

Conclusion

Outperforms conventional Shallow_UWnet

convolution block to enhance the generalization ability of the model.

minimum energy neuron is calculated as :

in PSNR and UIQM metrics.

Fewer trainable parameters and faster testing time.

Suitable for real-time applications in resource-constrained underwater robots, such as AUVs and ROVs.

Where T is the target neuron, ϵ_T represents the lower energy neuron , η and ρ^2 is the mean and variance of

neurons.