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A memory-based video transformer for Class Incremental Learning (CIL). The video CIL model learns a set of video classification tasks and memorizes the features of each class in
a memory buffer, which is added when learning a new classes.
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Results on UCF101 and HMDB51 when considering 10

v’ Current video classification approaches suffer from catastrophic forgetting when
retrained on new databases. (top) and 5 (bottom) classes per task.
v Continual learning aims to enable a classification system with learning from a
succession of tasks without forgetting.
v' We propose to use a characteristic spatiotemporal feature from videos extracted by a 1004 100
transformer-based model for video continual learning. 90| 0l §
v To prevent catastrophic forgetting problems, we gradually built and trained a new 0 80! B
classifier model with video data from new tasks combined with the memory data. 0 70 il
v Our proposed model is evaluated on standard action recognition datasets including &0 J
UCF101 and HMDB51, which are splitinto sets of classes, to be learnt sequentially. § 60 Q |
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The overview of our proposed pipeline is illustrated in the figure above. A video 0 I E—— S R D R 0 | | |
transformer is considered for extracting spatiotemporal video features while a series of 10 20 30 40 50 60 /0 80 90 101 10 20 30 40 o1
modules are built upon the transformer. Number of classes Number of classes
1. Initially, the model is composed of a video transformer model and a classification (a) UCF 101, 10 classes per task. (b) HMDB51, 10 classes per task.
module, which is considered a Multi-Layer Perceptron (MLP) network.
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2. The features extracted by the transformer from the data corresponding to a certain 90] o —-g-v-=% ] 90!
class are used for training a classifier. 20
3. After completing the training of the classifier, the features extracted by the 70 70
transformer are stored in a memory buffer. > 6 > 60
4. When new video samples become available through a continual incoming stream © - © -
of video data, the classifier model is trained again on both the features extracted S S
from the videos from the new task videos as well as those from the existing buffers. < 407 1< 40
5. New buffers with transformer-based features corresponding to each new task are 0 & FineTuning | 30 e FineTuning
added continuously to the memory buffer during the CIL. 20| 9 Our (MViTvas based i 20| 9 Our (MViTvas based A
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A certain video will be kept in the memory buffer. In our approach, we tackle the memory

problem by proposing as following: Number of classes

(d) HMDB51, 5 classes per task.

Number of classes

v’ We store features instead of the entire video. (c) UCF101, 5 classes per task.

v We reducing the amount of stored data by roughly 99% when compared with storing
the entire video.
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Results on UCF101 when varying the number of video
features stored for the continual learning.
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Average Accuracy For Action recognition performance on
UCF101 and HMDB51 with no initial learned classes.

HMDB51

(a) UCF 101, 10 classes per task.

Conclusions

(b) UCF 101, 5 classes per task.
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50 0 Co v We proposed to use the temporal transformer features with the memory-based
25 25 architecture for video class incremental learning.
0 \ \ \ \ - . 0 \ : \ \ . . 4 We replace storing original videos with storing extracted features, thus
o R e o - i 0‘ e \O&&&e\«e P e o o ° o significantly reducing the required m g m ory. - o
‘\°“ w > 7 < N 7 4 We replay extracted features, thus efficiently training time during video CIL.
On UCF101: v Our proposed method outperforms other video CIL models in both performance
I E E E v' achieves up to 10.70% at learning 10 classes per task. and efficiency, while not requiring an initial set of classes to initiate its training.
v’ achieves up to 10.96% at learning 5 classes per task.
On HMDB51
- v’ achieves up to 17.89% at learning 10 classes per task. AC kn OWle d ge m e ntS
N v’ achieves up to 20.39% at learning 5 classes per task.
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