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ADbstract

Deep learning excels in image classification but I1s constrained by its complexity. While joint pruning-quantization offers improvements, it can be further
enhanced by considering layer correlations. This @) exposes redundant computations across layers, @ facilitates faster convergence in finding optimal pruning-
guantization configurations, and @) achieves better or comparable complexity reduction compared to other works. This paper introduces Graph Neural Networks
(GNNS) to aggregate these inter-layer relationships.
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