Correlation-Aware Joint-Pruning-Quantization using Graph Neural Networks

Muhammad Nor Azzafri Nor-Azman, Usman Ullah Sheikh, Mohammed Sultan Mohammed, Jeevan Sirkunan, Muhammad Nadzir Marsono

Abstract

Deep learning excels in image classification but is constrained by its complexity. While joint pruning-quantization offers improvements, it can be further enhanced by considering layer correlations. This 1 exposes redundant computations across layers, 2 facilitates faster convergence in finding optimal pruningquantization configurations, and 3 achieves better or comparable complexity reduction compared to other works. This paper introduces Graph Neural Networks (GNNs) to aggregate these inter-layer relationships.

Methodology

Input: *E*_{max}, *R*_{solve}, *N*_{max}, *C*_{target}, *I*_{update}, *K*, *Q* 1: $e \leftarrow 0$

Overview	of	und	lerly	ying	process

- •	1 1	4
JVNOr1	montal	Cotun
じんししし	IIICIItal	Solut

The GNN is integrated into a reinforcement learning (RL) framework. The baseline or pruned-	CIFA
quantized model is transformed into a graph to serve as the RL state, where the agent proposes	ResNo
actions to prune and quantize the model, with the resulting accuracy as the reward. As episodes	Batch
programs the event laware give the CNN to conture lawar correlations learns to propose optimal	\square \square \square \square

R10 (5:1 training-to-validation ratio) et20/56size 256

	-			•			
		7		 -			

DI Modol	Annroach	Complexity	Top-1	
DL MUUEI	Approach	Reduction	Accuracy	
	Baseline	0%	91.73%	
	AGMC [1]	50%	91.42%	
ResNet20	GNNRL [2]	49%	91.31%	
	DBNN [3]	99.1%	91.60%	
	Proposed	96.36%	91.62%	
ResNet56	Baseline	0%	93.39%	
	AGMC [1]	50%	92.76%	
	GNNRL [2]	50%	93.49%	
	Proposed	98.51%	92.80%	

3 96–98% complexity reduction with 0.1–1.1% accuracy trade-offs.

ON Computer Vision, 2021, pp. 6362-[2] Sixing Yu, Arya Mazaheri, and Ali Jannesari, "Topology-aware network pruning using multi-stage graph embedding and reinforcement International Conference on Machine Learning. [3] Yuhan Lin, Lingfeng Niu, Yang Xiao, and Ruizhi Zhou, "Diluted binary neural network," *Pattern Recognition*, vol. 140, pp. 109556, 2023.

Interval for policy update

Epochs for policy update

Graph layer

Timesteps

Pruning action

Λ

n, N

 P_d