
Fig. 1 Example of graph transformation for two residual block.Fig. 1 Example of graph transformation for two residual block.

 Symbol Representation

Abstract

Deep learning excels in image classification but is constrained by its complexity. While joint pruning-quantization offers improvements, it can be further

enhanced by considering layer correlations. This ❶ exposes redundant computations across layers, ❷ facilitates faster convergence in finding optimal pruning-

quantization configurations, and ❸ achieves better or comparable complexity reduction compared to other works. This paper introduces Graph Neural Networks

(GNNs) to aggregate these inter-layer relationships.

Methodology

Experimental setup

▪ CIFAR10 (5:1 training-to-validation ratio)

▪ ResNet20/56

▪ Batch size 256

▪ Pytorch’s augmentation

Algorithm 1 Joint pruning-quantization using GNN and RL

Input: Emax, Rsolve, Nmax, Ctarget, Iupdate, K, Q

Output: modelpruned-quantized

 1: e ← 0

 2: while e ≤ Emax and R ≤ Rsolve do

 3: Reset modelbase and state

 4: Set state through graph representation of modelbase

 5: n ← 0

 6: while n ≤ Nmax and Ccurrent ≤ Ctarget do

 7: Set Ccurrent based on agent’s action

 8: Prune modelbase based on agent’s action

 9: Quantize modelpruned based on agent’s action

10: Finetune modelpruned-quantized for F epochs

11: Update state through graph representation

 of modelpruned-quantized

12: Get reward from modelpruned-quantized

13: Increment n

14: end while

15: if e mod Iupdate = 0 then

16: Train agent for K epochs

17: end if

18: Increment e

19: end while

Algorithm 1 Joint pruning-quantization using GNN and RL

Input: Emax, Rsolve, Nmax, Ctarget, Iupdate, K, Q

Output: modelpruned-quantized

 1: e ← 0

 2: while e ≤ Emax and R ≤ Rsolve do

 3: Reset modelbase and state

 4: Set state through graph representation of modelbase

 5: n ← 0

 6: while n ≤ Nmax and Ccurrent ≤ Ctarget do

 7: Set Ccurrent based on agent’s action

 8: Prune modelbase based on agent’s action

 9: Quantize modelpruned based on agent’s action

10: Finetune modelpruned-quantized for F epochs

11: Update state through graph representation

 of modelpruned-quantized

12: Get reward from modelpruned-quantized

13: Increment n

14: end while

15: if e mod Iupdate = 0 then

16: Train agent for K epochs

17: end if

18: Increment e

19: end while

bd

C

d

e, E

F

G

hl

I

K

l

n, N

Pd

Qd

R

Bitwidth at layer d

Complexity reduction

Layer of modelbase

Episode

Finetuning epochs

Computational graph

Hidden state at layer l

Interval for policy update

Epochs for policy update

Graph layer

Timesteps

Pruning action

Quantization action

Reward

Overview of underlying process

The GNN is integrated into a reinforcement learning (RL) framework. The baseline or pruned-

quantized model is transformed into a graph to serve as the RL state, where the agent proposes

actions to prune and quantize the model, with the resulting accuracy as the reward. As episodes

progress, the agent, leveraging the GNN to capture layer correlations, learns to propose optimal

pruning-quantization actions that maximize accuracy.

Line 16 – All GNN learnable weights are updated within the RL’s

proximal policy optimization.

Line 8 – Pd ∈ [0,1] : Action determines the pruning ratio for channels

with the lowest L2-norm.

Line 12 – R: Accuracy on validation dataset.

Line 9 – Qd ∈[0,1] : Action determines the bitwidth using the formula:

Results ① Results ②

Results ③

Future works

❶ Investigate how other joint

pruning-quantization methods impact

inter-layer correlations to gain further

insights.

❷ Optimize the depth for the best

trade-off, as fewer iterations increase

per-iteration time.

❸ Validate with additional models

and datasets.

References

[1] Sixing Yu, Arya Mazaheri, and

Ali Jannesari, “Auto graph encoder-

decoder for neural network pruning,”

in Proceedings of the IEEE/CVF

International Conference on

Computer Vision, 2021, pp. 6362–

6372.

[2] Sixing Yu, Arya Mazaheri, and

Ali Jannesari, “Topology-aware

network pruning using multi-stage

graph embedding and reinforcement

learning,” in International

Conference on Machine Learning.

PMLR, 2022, pp. 25656–25667.

[3] Yuhan Lin, Lingfeng Niu, Yang

Xiao, and Ruizhi Zhou, “Diluted

binary neural network,” Pattern

Recognition, vol. 140, pp. 109556,

2023.

❷ The ablation study demonstrates that the GNN

reduces the number of iterations by an average of 2.46x.

❶ Lower correlation in the joint pruning-quantization

model suggests that each layer contributes unique

computations.

Fig. 2 Pearson correlation matrices

Fig. 3 Convergence rate

Correlation-Aware Joint-Pruning-Quantization

using Graph Neural Networks
Muhammad Nor Azzafri Nor-Azman, Usman Ullah Sheikh, Mohammed Sultan

Mohammed, Jeevan Sirkunan, Muhammad Nadzir Marsono

Correlation-Aware Joint-Pruning-Quantization

using Graph Neural Networks
Muhammad Nor Azzafri Nor-Azman, Usman Ullah Sheikh, Mohammed Sultan

Mohammed, Jeevan Sirkunan, Muhammad Nadzir Marsono

bd = round(bmin−0.5+Qd ×(bmax−bmin+1))

DL Model
Complexity

Reduction

0%
50%
49%

99.1%
96.36%

0%
50%
50%

98.51%

Approach

Baseline
AGMC [1]
GNNRL [2]
DBNN [3]
Proposed
Baseline

AGMC [1]
GNNRL [2]
Proposed

Top-1

Accuracy

91.73%
91.42%
91.31%
91.60%
91.62%
93.39%
92.76%
93.49%
92.80%

ResNet20

ResNet56

❸ 96–98% complexity reduction with 0.1–1.1%

accuracy trade-offs.

DL Model
Complexity

Reduction

0%
50%
49%

99.1%
96.36%

0%
50%
50%

98.51%

Approach

Baseline
AGMC [1]
GNNRL [2]
DBNN [3]
Proposed
Baseline

AGMC [1]
GNNRL [2]
Proposed

Top-1

Accuracy

91.73%
91.42%
91.31%
91.60%
91.62%
93.39%
92.76%
93.49%
92.80%

ResNet20

ResNet56

❸ 96–98% complexity reduction with 0.1–1.1%

accuracy trade-offs.

	ICIP2024.vsdx
	v2

