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Abstract

Deep learning excels in image classification but is constrained by its complexity. While joint pruning-quantization offers improvements, it can be further 

enhanced by considering layer correlations. This ❶ exposes redundant computations across layers, ❷ facilitates faster convergence in finding optimal pruning-

quantization configurations, and ❸ achieves better or comparable complexity reduction compared to other works. This paper introduces Graph Neural Networks 

(GNNs) to aggregate these inter-layer relationships.

Methodology

Experimental setup

▪ CIFAR10 (5:1 training-to-validation ratio)

▪ ResNet20/56

▪ Batch size 256

▪ Pytorch’s augmentation

Algorithm 1 Joint pruning-quantization using GNN and RL

Input: Emax, Rsolve, Nmax, Ctarget, Iupdate, K, Q

Output: modelpruned-quantized

 1:  e ← 0

 2:  while e ≤ Emax and R ≤ Rsolve do

 3:       Reset modelbase and state

 4:       Set state through graph representation of modelbase

 5:       n ← 0

 6:       while n ≤ Nmax and Ccurrent ≤ Ctarget do 

 7:            Set Ccurrent based on agent’s action

 8:            Prune modelbase based on agent’s action

 9:            Quantize modelpruned based on agent’s action

10:           Finetune modelpruned-quantized for F epochs

11:           Update state through graph representation

               of modelpruned-quantized

12:           Get reward from modelpruned-quantized

13:           Increment n

14:       end while

15:       if e mod Iupdate = 0 then

16:            Train agent for K epochs

17:       end if

18:       Increment e

19:  end while
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Overview of underlying process

The GNN is integrated into a reinforcement learning (RL) framework. The baseline or pruned-

quantized model is transformed into a graph to serve as the RL state, where the agent proposes 

actions to prune and quantize the model, with the resulting accuracy as the reward. As episodes 

progress, the agent, leveraging the GNN to capture layer correlations, learns to propose optimal 

pruning-quantization actions that maximize accuracy.

Line 16 – All GNN learnable weights are updated within the RL’s 

proximal policy optimization.

Line 8 – Pd ∈ [0,1] : Action determines the pruning ratio for channels 

with the lowest L2-norm.

Line 12 – R: Accuracy on validation dataset.

Line 9 – Qd ∈[0,1] : Action determines the bitwidth using the formula:
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Future works

❶ Investigate how other joint 

pruning-quantization methods impact 

inter-layer correlations to gain further 

insights.

❷ Optimize the depth for the best 

trade-off, as fewer iterations increase 

per-iteration time.

❸ Validate with additional models 

and datasets.
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❷ The ablation study demonstrates that the GNN 

reduces the number of iterations by an average of 2.46x.

❶ Lower correlation in the joint pruning-quantization 

model suggests that each layer contributes unique 

computations.

Fig. 2 Pearson correlation matrices

Fig. 3 Convergence rate
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bd =  round(bmin−0.5+Qd ×(bmax−bmin+1))
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