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Stroke is  a leading cause of death 
worldwide

Ischemic Stroke emerging as its predominant form

MRI commonly used by clinicians to detect core and penumbra

DNN based medical image segmentation (encoder & decoder architecture)

Challenge (a): complexity (b) small size dataset (c) non-IID

FANTOM comes to the rescue.

Federated Adversarial Network for Training Multi-Sequence Magnetic Resonance Imaging in Semantic Segmentation

Introduction

Hossein Abbasi, , et al., “Automatic brain ischemic stroke segmentation with deep learning: A review,” Neuroscience Informatics, 2023.
Stefan Winzeck et al., “Isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral mri,” Frontiers in neurology, 2018.
Jiaxu Miao , et al.,“Fedseg: Class-heterogeneous federated learning for se-mantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
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Motivation for FL

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/chart/16400/internet-online-privacy/
https://abyssal.eu/were-data-hungry/

Growth of Data Generation
Privacy Concerns

Deep Learning
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Deep 
Learning

Data

Privacy

Motivation for FL

Jian Wang, , et al., “A review of deep learning on medical image analysis,” Mobile Networks and Applications, 2021.
George J Annas, “Medical privacy and medical research: judging the new federal regulations,” New England Journal of Medicine, 2012.
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Weight Averaging methods
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o Examples:
o  Federated Averaging (FedAvg) [1]

o  Federated Averaging with proximal term (FedProx) [2]

o These algorithms don’t converge in non-IID cases

[1]  McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. (PMLR), 2017.

[2] Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and Systems 2 (MLSys), 2020.
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Issue in Weight Averaging Methods

What can be the issue?

o Operations inside Neural networks are summations of products 

(Ignore bias for simplicity)
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o Summation is a permutation invariant operation

(same)

Client C2

Client C1

[Solution]: 

To aggregate models neurons should be 

properly matched across all clients

Learning different features

Benjamin Bloem-Reddy, et al., “Probabilistic symmetries and invariant neural networks,” Journal of Machine Learning Research (JMLR), 2020.
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Multiple communication rounds

o In a FL scenario models are aggregated by a central server and then sent to local clients for retraining

o This continues for some communication rounds

o Since global models size is not fixed, only the matched 

neurons are set in local clients

round → 𝑡 round → 𝑡 + 1

30/10/2024
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Matching is based on the following

• Levy-Processes

• Beta-Process

• Bernoulli-Process

30/10/2024
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Federated Matched Averaging (FedMA)

Client C1 Client C2 Client C3Client C1 Client C2 Client C3

Local 

training
Final global model

Update neurons 

of layer 1

re-train subsequent 

layers freezing 1st layer

https://github.com/IBM/FedMA 
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Problem with FedMA

• 1 CR followed by one layer matching takes more CRs.

• A model with N layers required N rounds of communication  → full model weights once

• Well trained model need not undergo matched average multiple times.

• Local dataset not be changed through out training process

Propose: FedAvg with Initial matching → weights of all layers will be matched only in 1 CR 

30/10/2024
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FedMA FedAvg with Initial 
FedMA Matching 
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Medical image segmentation using DL
o Deep neural networks are very popular choice for medical image segmentation as they can learn very complex patterns

o Unet [1], SUMNet [2] are some of the popular networks for medical image segmentation

[1] Ronneberger, Olaf, , et al., "U-net: Convolutional networks for biomedical image segmentation." Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015.

[2] Nandamuri, Sumanth, et al., "Sumnet: Fully convolutional model for fast segmentation of anatomical structures in ultrasound volumes." , in Proceedings International Symposium on Biomedical Imaging (ISBI), 2019.
[3] Kaiming He , et al., “Deep residual learning for image recognition,” in Proceedings Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[4] Sergey Loffe , , et al., “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings International Conference on Machine Learning. (PMLR), 2015.

o They are encoder-decoder architectures which has feature concatenations 

that enhance the capabilities of these models

o Our proposed method needs to be modified to work with these type of 

architectures

More modifications needed in the proposed method

o Should be able to handle feature concatenation [3]

o Should be able to perform matching for batch-normalization [4]

o Should be able to handle transpose convolution

𝑆𝑘𝑖𝑝 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

Transpose Convolution

𝐖𝑑𝑒𝑐𝑜𝑑𝑒𝑟

𝐖𝑑𝑒𝑐𝑜𝑑𝑒𝑟
𝑢𝑝𝑝𝑒𝑟

𝐖𝑑𝑒𝑐𝑜𝑑𝑒𝑟
𝑙𝑜𝑤𝑒𝑟
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Experiments: Dataset

o We have performed experiments on Ischaemic Stroke Lesion Segmentation Challenge (ISLES)-2015 dataset

https://www.isles-challenge.org/ISLES2015/ 

o It contains Magnetic Imaging Response (MRI) images

o Following are the channels which are present in the dataset

o Diffusion Weighted Imaging (DWI)

o Time to max (Tmax)

o Time to peak (TTP)

𝐃𝐖𝐈 𝐓𝐦𝐚𝐱 𝐓𝐓𝐏

o Following are the channels to be segmented

o Penumbra

o Core

𝐏𝐞𝐧𝐮𝐦𝐛𝐫𝐚 𝐂𝐨𝐫𝐞

o There are total 30 volumes with an average of 70 slices per volume

o Size of each slice is 94x110 on an average

30/10/2024
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Fig: Overview of adversarial training 

Local and Global Training

Rachana Sathish et al., “Adversarially trained convolutional neural networks for semantic segmentation of ischaemic stroke lesion using multisequence magnetic resonance imaging,” in Proceedings International Conference of the Engineering in Medicine and 

Biology Society (EMBC), 2019.
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Three experiments are carried under FL setup

1. FL Expt 1: Training without relativistic visual Turning test (rVTT)

2. FL Expt 2: rVTT discriminators are included in the FL framework

3. FL Expt 3: rVTT discriminators are excluded in the FL framework

• Dataset: Ischaemic Stroke Lesion Segmentation Challenge (ISLES 2015)

• Used – DWI, TTP and Tmax sequence

• Performance evaluated – 3 fold cross validation (6:2:2)

• Images resize – 128 x128

• 20 training subjects into 3 clients

• Segmentation model – SUMNet

• Initial epochs 230. Rest -200

• #CR: 20

Training Details

30/10/2024
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Experimental Results

Table: Evaluation results of the method with centralized (CT) setup and 3 different FL setups
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Fig: (a-c), Input Sequence GT, (d) gray for penumbra & white for core, (e-f) Centralized 
training (g-h) without rVTT, (i-j) rVTT included in FL setup and (k-l) rVTT excluded in FL setup

Qualitative Results

30/10/2024
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Communication Efficiency

❑ Let 𝑀 is the total number of parameters

❑ Number of bits required are:

• Vanilla Fed Avg: 2𝑀

• FL Exp 2: 2 𝑀 + 𝑘𝑁𝐷 , where 𝑘 discriminators are used each having 𝑁𝐷 parameters

• FL Exp 3: 𝟐𝑴

Using discriminators locally in the FL framework not only gives better performance but also reduces a 
significant communication burden

30/10/2024
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Conclusion

✓ Proposed FANTOM to handle data and model specific challenge in distributed environment

✓ FANTOM gives the benefits of both kernel matching before aggregating along with FedAvg

✓ Handled kernel matching in CNNs

✓ Explored the effect of using adversarial mechanism in the FL framework

✓ Balance both the performance as well as communication burden

30/10/2024
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