Generalized Nested Latent Variable Models For Lossy Coding Applied To Wind Turbine Scenarios

ICI Portugation of the second second

Raül Pérez-Gonzalo, Andreas Espersen and Antonio Agudo

Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Spain Wind Power LAB, Copenhagen, Denmark

Abstract

Rate-distortion optimization seeks to minimize the compromise between compression rate and reconstructed image quality. A successful approach introduces a deep hyperprior in a 2-level nested latent variable model. This work extends this concept to an *L*-level nested generative model with a Markov chain structure. We show as *L* increases, a trainable prior becomes detrimental and explore shared dimensionality across latent variables to enhance compression. This framework generalizes autoregressive coders, outperforming the hyperprior model and achieving state-of-the-art performance with lower computational cost.

Nested Latent Variable Models

$$(\mathbf{x} \longrightarrow (\mathbf{z}_1) \longrightarrow (\mathbf{z}_2) \cdots (\mathbf{z}_{L-1}) \longrightarrow (\mathbf{z}_L) \longleftrightarrow (\mathbf{z}_L)$$

Generalized Rate-distortion trade-off

We seek to minimize the trade-off governed by $\lambda \in R$ between the compression rate and the decompression error *d*:

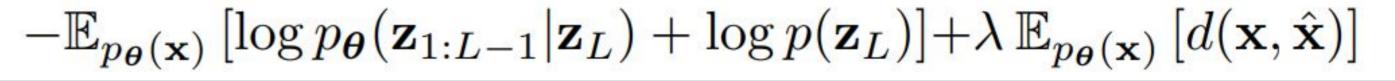
 $p_{\boldsymbol{\theta}}(\mathbf{z}_1 | \mathbf{z}_2) \cdots p_{\boldsymbol{\theta}}(\mathbf{z}_{L-1} | \mathbf{z}_L) \cdots p_{\boldsymbol{\theta}}(\mathbf{z}_{L-1} | \mathbf{z}_L) \cdots$

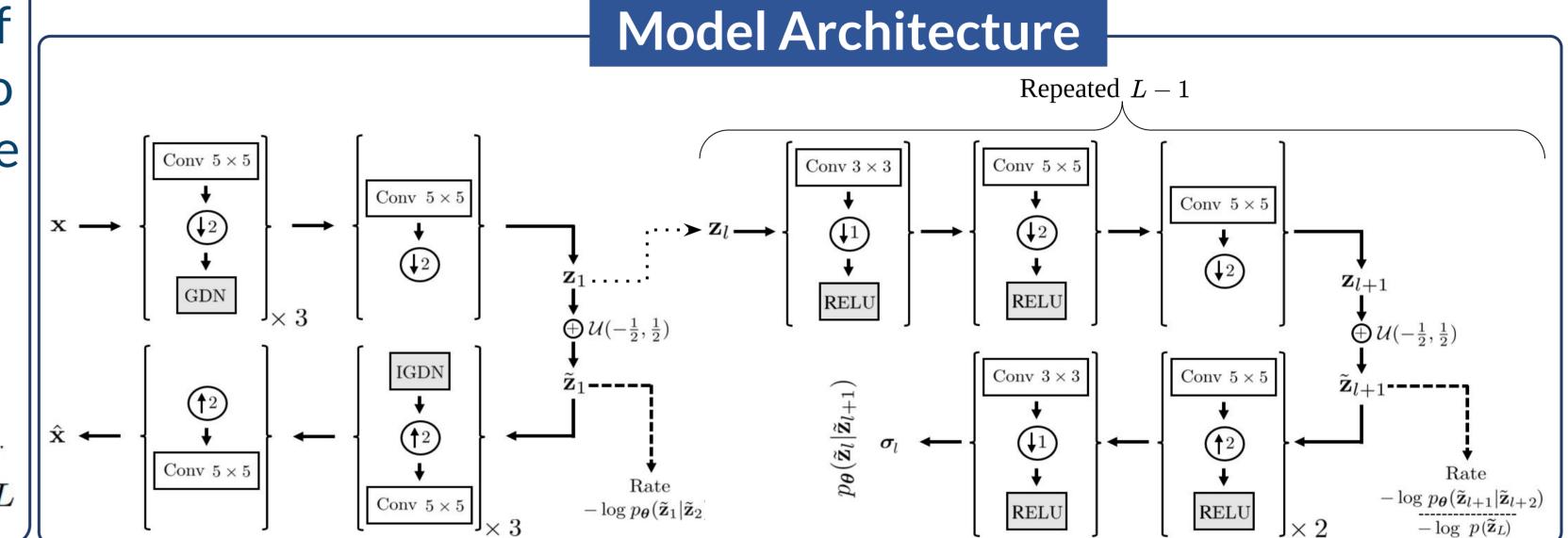
We aim to learn a probabilistic model $p_{\theta}(\mathbf{x})$ of our observed data \mathbf{x} to successfully apply an entropy coder capable of compressing them, where $\boldsymbol{\theta}$ denotes the model parameters. To address this learning problem, fully-observed models are iteratively marginalized over nested latent variables $\mathbf{z}_1,...,\mathbf{z}_l$

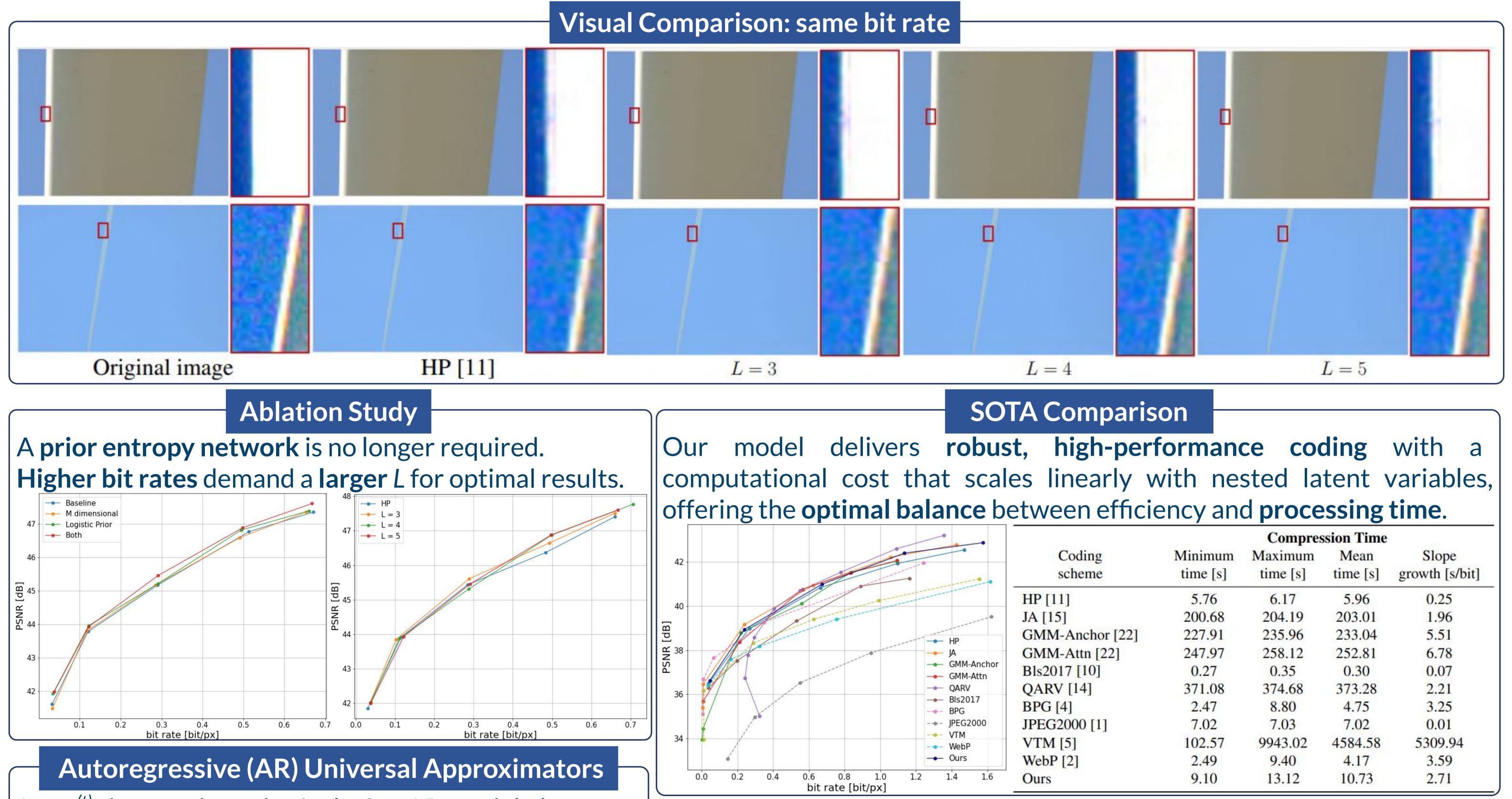
 $p_{\boldsymbol{\theta}}(\mathbf{x}) = \int p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}_1) p_{\boldsymbol{\theta}}(\mathbf{z}_{1:L-1}|\mathbf{z}_L) p(\mathbf{z}_L) \, d\mathbf{z}_{1:L}$

where we have defined for conciseness:

 $p_{\theta}(\mathbf{z}_{1:L-1}|\mathbf{z}_L) = \prod_{l=1}^{L-1} p_{\theta}(\mathbf{z}_l|\mathbf{z}_{l+1}) \text{ and } d\mathbf{z}_{1:L} = d\mathbf{z}_1 d\mathbf{z}_2 \dots d\mathbf{z}_{L-1} d\mathbf{z}_L$







Let $x^{(t)}$ denote the *t*-th pixel of **x**, AR models leverage the previously decoded pixels $x^{(t-1)}$, $x^{(t-2)}$,..., $x^{(t-2)}$ to enhance the coding performance of the next pixel

 $p_{\theta}(\mathbf{x}) = \prod p_{\theta}(x^{(t)}|x^{(t-1)}, \dots, x^{(1)})$

WLOG, we assume each latent variable z_l only has a single component. Nested latent variable models can approximate AR models by decoding each pixel component through an additional latent variable: the *t*-th pixel component $x^{(t)}$ is decoded by z_{L-t+1} through $p_{\theta}(\mathbf{x}) = \prod p(z_{L-t+1}|z_{L-t+2}, \dots, z_L)$

Conclusions

We introduce a versatile *L*-level nested latent model that captures the intricate dependencies among latent variables with greater fidelity and marked compression improvement. By selecting the optimal layer depth depending on the rate-distortion trade-off, these generalized models surpass the hyperprior performance without a trainable prior and successfully approximate autoregressive models, accomplishing state-of-the-art results while reducing the computational cost.

Supported by Innovation Fund Denmark under 2021 ID1044-0044A and by MoHuCo PID2020- 120049RB-I00; MCIN/AEI/10.13039/501100011033.

Global Blade Optimisation