
1. RELATED WORK

1.1. Image Inpainting

Conventional image inpainting methods et al. [1, 2, 3] fill
the holes by borrowing existing content from the known re-
gion. These methods cannot generate entirely new content
that does not exist in the input image. In recent years, driven
by the success of deep generative models, extensive research
efforts have been put into data-driven deep learning based ap-
proaches [4, 5, 6, 7]. This branch of work usually formu-
lates image completion as an image generation problem con-
ditioned on the existing pixels in known regions. They can
generate plausible new content and have shown significant
improvements in filling holes in complex images.

Some works attempt to allow users to provide more guid-
ance to reduce the ambiguity of image inpainting and improve
the results. Different types of guidance have been explored,
such as examplar images, sketches, label maps, and text. Yu et
al. [8] propose DeepFillV2 for sketch-guided image inpaint-
ing. Park [9] explore face inpainting with sketch and color
as guidance. Zhang et al. [10] propose to inpaint the missing
part of an image according to text guidance provided by users.
Ardino et al. [11] propose to use label maps as guidance for
image inpainting. Although the guided inpainting methods
[10] and [11] might be able to generate an entire object if the
text or label map about the object is given as guidance, they
require the users to provide the external guidance explicitly.
In comparison, our method only takes the incomplete image
and hole mask as input. Compared with text/class conditional
inpainting methods, which focus on controlling semantic at-
tributes of the objects, our method provides a more flexible
way and allows users to control both the shape and category
of the object to inpaint.

1.2. Semantic Image Synthesis

Semantic image synthesis is a subclass of conditional image
generation aimed at generating photorealistic images from
user-specified semantic layouts. It was first introduced by
Isola et al. [12], who proposed an image-to-image translation
framework, called Pix2Pix, to generate images from label
maps or edge maps. Zhu et al. [13] propose CycleGAN where
an image translation model can be trained on unpaired data
with a cycle consistency constraint. Park et al. [14] propose
spatially-adaptive normalization for semantic image synthe-
sis, which modulates the activations using semantic layouts
to propagate semantic information throughout the network.
Chen et al. [15] propose cascaded refinement networks and
use perceptual losses for semantic image synthesis. Wang et
al. [16] propose Pix2PixHD which improves the quality of
synthesized images using feature matching losses, multiscale
discriminators, and an improved generator. Our method takes
inspiration from semantic image synthesis methods to design
the top-down stream of the contextual object generator. Un-

like semantic image synthesis, where the semantic layouts or
label maps are known, our semantic object maps are derived
by combining the predicted class and the hole mask.

1.3. Background-based Object Recognition

Object recognition is the task of categorizing images ac-
cording to visual content. In recent years, the availability of
large-scale datasets and powerful computers made it possible
to train deep CNNs, which achieved breakthrough success
for object recognition [17]. Normally, an object recognition
model categorizes an object primarily by recognizing visual
patterns in the foreground region. However, recent research
has shown that a deep network can produce reasonable object
results with only background available. Zhu et al. [18] find
that the AlexNet model [17] trained on a pure background
without objects achieves a highly reasonable recognition per-
formance that beats human recognition in the same situations.
Xiao et al. [19] analyze the performance of state-of-the-art
architectures on object recognition with foreground removed
in different ways. It is reported that the models can achieve
over 70% test accuracy in a no-foreground setting where the
foreground objects are masked. These works aim to predict
only the class of an object from background. In this paper,
we show that the entire object can be generated based on the
background.

2. ABLATION STUDY

Object prior. Unlike previous work on image inpainting
which generates the training data using random masks, we
construct the specialized training data for object inpainting
to incorporate object prior. Without this prior, the trained
inpainting model usually has the bias towards background
generation and will not generate objects when filling a miss-
ing region, as shown in Fig. 1 (b).
The predictive class embedding (PCE). PCE extracts in-
formation related to the class from the context. Without this
module, the model trained on object data might be able to
produce object-like content. However, it is challenging to
generate a semantically reasonable object without knowing
the object’s class. As shown in Fig. 1 (c), usually the ap-
pearance of the generated objects are simply taken from the
nearby regions. For instance, in the second row, the model
without PCE generates an object of zebra shape but with the
texture of a nearby giraffe. By default, the dimension of the
class embedding is set to 1024 for all experiments. We find
that the performance is not very sensitive to the dimension of
the class embedding. The second column of Table 3 reports
the results with the 512-dimensional class embedding, which
is close to the results with the 1024-dimensional embedding.
Top-down stream. The top-down stream takes the seman-
tic object mask as input, which provides a stronger spatial
semantic guidance for object generation. Without this infor-



Fig. 1: From left to right are: (a) input, (b) without ob-
ject training data, (c) without predictive class embedding, (d)
without top-down stream, (e) full model.

Table 1: Effect of each component in terms of FID and LPIPS.

Object Data PCE Top-down FID LPIPS√
6.144 0.1066√ √
5.434 0.1081√ √ √
4.700 0.1049

mation, the model can only access class-related information
from PCE, which is insufficient for hallucinating object ap-
pearance. Hence the model will still rely on the appearance
of the surrounding area. As shown in Fig. 1 (d), although
the model without the top-down stream can produce some ze-
bra strikes, the color of the zebra seems to be from the sur-
rounding background area. Table 1 reports FID scores with
and without each component. We can see that the predic-
tive class embedding and the incorporation of the top-down
stream can significantly reduce the FID by providing class-
related information. To further demonstrate the effect of
the top-down stream, we present the results with altered class
labels in Fig. 3 (c). Specifically, in this experiment, when
constructing the semantic object maps, we manually assign a
class label rather than using the predicted class. For instance,
for the example in the left of the first row, the predicted class
is giraffe as shown in (b). To obtain the result in (c), we man-
ually assign the zebra class to the semantic object map. From
the results in Fig. 3 we can see that an object generated with
altered class has lighting and style similar to the original re-
sult but has the class-related feature of the assigned class.
Shape Guidance. In shape-guided object inpainting, the
guidance is given implicitly by the shape of a missing region.
To explore the effect of shape guidance, we train the mod-
els using object masks of different precision: precise masks,
coarse masks obtained by dilating the original masks with
21 pixels, and square masks. The FID, LIPIS as well as the
recognition accuracy of the missing objects are shown in Ta-
ble 2. We can see that dilated masks lead to a performance
drop within a reasonable range, and square masks lead to a
large drop in both image quality and recognition accuracy.
SC AdaIN. We use positional normalization following [20]

Fig. 2: Our method can produce multiple diverse object in-
painting results for the same input image by using different
random latent code z.

Table 2: Effect of imprecise masks. Acc1: top 1 accuracy; Acc3:
top 3 accuracy.

Masks FID LPIPS Acc1 Acc3
Precise Masks 7.693 0.1122 0.5100 0.7180
Dilated Masks 10.25 0.1371 0.4104 0.6760
Square Masks 15.70 0.4192 0.1740 0.4760

as it computes the statistics at each spatial position and can
better preserve the structure information. The fourth and fifth
columns of Table 3 report the results obtained by aggregating
encoder feature maps with instance normalization and con-
catenation. Using positional normalization (second column)
yields better results than the other choices.
User-drawn masks. Our method is robust to imperfect masks
as long as the shapes in masks are recognizable. As indicated
in Table 2, using square hole masks leads to an obvious per-
formance drop, while the performance with dilated masks is
comparable to accurate masks. Therefore, for object inser-
tion, imperfect user-drawn masks are also acceptable. Fig. 4
shows example results with user-drawn masks as input. As
the proposed method predicts classes based on both shape and
context information, it can still generate reasonable objects
when one of them is ambiguous, i.e. when the object masks
are imprecise or with mismatched masks and context, e.g. a
giraffe mask on a beach.
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Fig. 3: Results obtained by altering the class of the semantic
object map. The texts under the images indicate the predicted
class or the manually assigned class. (a) input; (b) results with
the predicted classes; (c) results with the assigned classes.
Table 3: Quantitative results on COCO validation set. Ours: ours
default setting; Ours-512: ours with 512 dimensional class embed-
ding; Ours-IN: results with instance normalization; Ours-Concat: re-
sults with concatenation.

Settings Ours Ours-512 Ours-IN Ours-Concat
FID↓ 4.700 4.742 5.492 5.226

LPIPS↓ 0.1049 0.1052 0.1075 0.1077
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