

Senone I-Vectors for Robust Speaker Verification

Zhili Tan¹, Yingke Zhu², Manwai Mak¹, Brian Mak² ¹*The Hong Kong Polytechnic University* ²*The Hong Kong University of Science and Technology*

Contents

- 1. I-Vector for Speaker Recognition
- 2. Motivation of Work
- 3. Conventional I-Vectors
- 4. DNN I-Vectors
- 5. Experiments on NIST 2012 Evaluation Set
- 6. Conclusions and Future Work

I-Vector Based Speaker Verification

channel-dependent characteristics.

Reject

<A

Motivation

- Integrates phonetic information into i-vectors by DNN
 - Extracts bottleneck (BN) features
 - Estimates senone posteriors
- Denoises the MFCC vectors through the deoising autoencoder
- This architecture allows us to extract BN features and estimates senone posteriors given noisy MFCCs as input, resulting in robust senone i-vectors.

Sufficient Statistics

- Given the observed acoustic feature vectors of speaker *i*,
- $O_i = \{o_1, ..., o_{iT_i}\}$, we can calculate the sufficient statistics corresponding to the Gaussian mixture *c*:

Posterior:
$$\gamma_c(\boldsymbol{o}_{it}) = \frac{\lambda_c^{(b)} \mathcal{N}(\boldsymbol{o}_{it} | \boldsymbol{\mu}_c^{(b)}, \boldsymbol{\Sigma}_c^{(b)})}{\sum_{j=1}^C \lambda_j^{(b)} \mathcal{N}(\boldsymbol{o}_{it} | \boldsymbol{\mu}_j^{(b)}, \boldsymbol{\Sigma}_j^{(b)})}$$

Oth order statistic $N_{ic} = \sum_t \gamma_c(\boldsymbol{o}_{it})$

1st order statistic
$$\tilde{\boldsymbol{f}}_{ic} = \sum_{t} \gamma_c(\boldsymbol{o}_{it})(\boldsymbol{o}_{it} - \boldsymbol{\mu}_c^{(b)})$$

2nd order statistic $\boldsymbol{S}_{ic} = \sum_t \gamma_c(\boldsymbol{o}_{it})(\boldsymbol{o}_{it} - \boldsymbol{\mu}_c)(\boldsymbol{o}_{it} - \boldsymbol{\mu}_c)^{\mathsf{T}}$

Total Variability Matrix Training

- I-vector model: $\boldsymbol{\mu}_i = \boldsymbol{\mu}^{(b)} + \boldsymbol{T} \boldsymbol{w}_i + \boldsymbol{\epsilon}_i$
- E-step:

$$egin{aligned} &\langle m{w}_i | \mathcal{O}_i
angle = m{L}_i^{-1} \sum_c m{T}_c^\intercal (m{\Sigma}_c^{(b)})^{-1} ilde{m{f}}_{ic} \ &\langle m{w}_i m{w}_i^\intercal | \mathcal{O}_i
angle = m{L}_i^{-1} + \langle m{w}_i | \mathcal{O}_i
angle \langle m{w}_i | \mathcal{O}_i
angle^\intercal \ &m{L}_i = m{I} + m{T}^\intercal (m{\Sigma}^{(b)})^{-1} m{N}_i m{T} \end{aligned}$$

• M-step:

$$\boldsymbol{T}_{c} = \left[\sum_{i} \tilde{\boldsymbol{f}}_{ic} \langle \boldsymbol{w}_{i} | \mathcal{O}_{i} \rangle^{\mathsf{T}}\right] \left[\sum_{i} N_{ic} \langle \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{\mathsf{T}} | \mathcal{O}_{i} \rangle\right]^{-1}$$

Mean Vector and Covariance Matrix

- In most systems, $\{\boldsymbol{\mu}_c\}$ and $\{\boldsymbol{\Sigma}_c\}$ are obtained from the UBM.
- However, they can also be obtained using the sufficient statistics:

$$\mu_{c} = \frac{\sum_{i} \sum_{t} \gamma_{c}(\boldsymbol{o}_{it}) \boldsymbol{o}_{it}}{\sum_{i} \sum_{t} \gamma_{c}(\boldsymbol{o}_{it})}$$
$$\boldsymbol{\Sigma}_{c} = \frac{\sum_{i} \sum_{t} \gamma_{c}(\boldsymbol{o}_{it}) (\boldsymbol{o}_{it} - \boldsymbol{\mu}_{c}) (\boldsymbol{o}_{it} - \boldsymbol{\mu}_{c})^{\mathsf{T}}}{\sum_{i} \sum_{t} \gamma_{c}(\boldsymbol{o}_{it})}$$

General Type of I-Vector

- Only the acoustic vectors \boldsymbol{o}_{it} and the mixture posteriors $\gamma_c(\boldsymbol{o}_{it})$ are necessary for i-vector extraction.
- Given the speech signal of the *t*-th frame in the *i*-th utterance \boldsymbol{S}_{it}
 - The MFCC could be replaced by other types of acoustic features:

$$\boldsymbol{o}_{it} = f(\boldsymbol{s}_{it})$$

 The mixture posteriors could be estimated from other model rather than GMM:

$$\gamma_c(\boldsymbol{s}_{it}) = P(c|\boldsymbol{s}_{it})$$

Senone I-Vector

- The general type of i-vector allows the integration of supervised signal, with the standard backends remaining unchanged.
 - The supervised information is brought by $f(\bullet)$ and c.
- For example, a deep neural network (DNN) trained for ASR can help to integrate the phonetic information into i-vectors.
 - The BN features replaces MFCCs as acoustic features;
 - The posteriors of senones replaces the GMM mixture posteriors.
- Furthermore, a denoising autoencoder integrated into i-vector extraction may help to improve the noise robustness.

DNN I-Vectors

- BN feature vectors: $\boldsymbol{o}_{it} = \text{BN}(\boldsymbol{s}_{it})$
- Senone posteriors: $\gamma_c(\boldsymbol{s}_{it}) = P_{DNN}(c|\boldsymbol{s}_{it})$
 - The output of the *c*-th node in the softmax output layer.
- Baum-Welch statistics:

$$N_{ic} = \sum_{t} P_{DNN}(c|\boldsymbol{s}_{it})$$

$$\tilde{\boldsymbol{f}}_{ic} = \sum_{t} P_{DNN}(c|\boldsymbol{s}_{it})(BN(\boldsymbol{s}_{it}) - \boldsymbol{\mu}_{c})$$

$$\boldsymbol{S}_{ic} = \sum_{t} P_{DNN}(c|\boldsymbol{s}_{it})(BN(\boldsymbol{s}_{it}) - \boldsymbol{\mu}_{c})(BN(\boldsymbol{s}_{it}) - \boldsymbol{\mu}_{c})^{\mathsf{T}}$$
where:

$$\boldsymbol{\mu}_{c} = \frac{\sum_{i} \sum_{t} \gamma_{c}(\boldsymbol{s}_{it}) \text{BN}(\boldsymbol{s}_{it})}{\sum_{i} N_{ic}}$$

Denoising Classifier Training

Denoising Senone I-vector Extraction

Experimental Setup

- Evaluation dataset: NIST 2012 SRE CC4
 - Add babble noise at SNR of 15dB, 6dB and 0dB
- Baseline:
 - Acoustic features: 19 MFCCs together with energy plus their 1st and 2nd derivatives→60-Dim with feature warping
 - Posteriors: from GMM with 1024 mixtures
- T-matrix
 - 500-dimensional subspace trained by clean data
- PLDA
 - 150 latent variables

SNR Distribution of Evaluation Set

DBN Setup

- Structure: *D*-256-256-256-*D*-256-256-60(BN)-2000(Senone)
 - \mathcal{D} represents the dimension of the input vectors
 - RBM pretraining: two Gaussian-Bernoulli RBMs and one Bernoulli-Gaussian RBM
 - BP fine-tuning: two linear activated layers
- Input of DNN:
 - 11 frames of 20-Dim MFCC without Feature Warping
 - Normalization by z-norm
- Decorrelation for BN features:
 - PCA whitening
 - GMM-UBM with diagonal covariance matrix

Result – Power of BN Features

- Posteriors from GMM-UBM are used
- Acoustic features are (1) MFCC, and (2) BN features

• With posteriors from GMM-UBM, BN features outperform MFCC under noisy conditions

Result – Power of Senone Posteriors

- BN features are used
- Posteriors are obtained from (1) UBM, and (2) DNN EER(%) minDCF

Original CC4 15dB CC4 6dB CC4 0dB CC4 Original CC4 15dB CC4 6dB CC4 0dB CC4

• With BN features, DNN posteriors outperform UBM posteriors

Result – Power of Denoising AE

- To verify the power of Denoising Autoencoder, another DNN without DAE training was built.
- Posteriors from DNN without DAE training
- BN features are (1) with DAE training, and (2) without DAE training

• The denoising autoencoder improves noise robustness

Conclusions and Future Work

- The senone i-vectors outperforms the conventional i-vectors under all of the SNR conditions.
- The senone information benefits i-vector extraction.
- The denoising autoencoder improves noise robustness.
- The original NIST 12 CC4 evaluation set already contains noisy speech. Experiments on only clean speech are necessary in the future.

THANKS !

Q & A

Full Result Table

		Original CC4		15dB CC4		6dB CC4		0dB CC4	
Acoustic Features	Posteriors from	EER(%)	minDCF	EER(%)	minDCF	EER(%)	minDCF	EER(%)	minDCF
MFCC	UBM	2.664	0.2830	3.600	0.3633	4.034	0.4412	7.522	0.7313
BN with DAE	UBM	2.945	0.3352	4.167	0.3595	3.999	0.4279	5.691	0.6722
BN with DAE	DNN with DAE	1.537	0.2468	2.616	0.2387	2.591	0.3545	5.404	0.7529
BN with DAE	DNN without DAE	1.476	0.2345	2.369	0.2289	2.370	0.3481	5.297	0.7465
BN without DAE	DNN with DAE	1.330	0.2319	2.305	0.2171	2.522	0.33 72	5.423	0.7495
BN without DAE	DNN without DAE	1.506	0.2219	2.440	0.2264	2.446	0.3573	5.531	0.7575