

IP PARIS

FOURIER PTYCHOGRAPHY MICROSCOPY WITH INTEGRATED POSITIONAL **MISALIGNMENT CORRECTION**

BACKGROUND

• Fourier Ptychography Microscopy (FPM) reconstructs intensity and phase highresolution images from multiple lowresolution captures under varying illumination directions using a matrix of LEDs [1].

RESULTS

Authors

Juliana do Nascimento

Damurie da Silva

Patrick Horain

• A physics-informed convolutional neural network (CNN) allows to iteratively optimize the reconstructed image of a sample to match the low-resolution captures [2].

 Pupil aberrations can be estimated during reconstruction [3].

OBJECTIVE

Enhance reconstruction by integrating the precise manual calibration and improving the reconstructed phase image. reconstruction accuracy.

METHODOLOGY

We integrate the LED matrix's position and orientation as learnable parameters of the reconstruction CNN. This involves:

Fig. 1: FPM reconstructions comparison

- (a) Reconstruction using Zheng et al.'s software [4].
- (b) Reconstruction by our network using Zheng et al.'s original LED positions [4].
- Reconstruction by our network with LED self-(C)calibration.
- Original and self-calibrated wave vectors for the (d)matrix of LEDs (x are the original Zheng et al. positions, \Box are the final self-calibrated positions).

correction of the LED positional Using Zheng et al.'s precise initial LED misalignment, so reducing the need for positions [4], self-calibration slightly improves

- Neural Network-based Self-calibration: The CNN iteratively adjusts LED positions, correcting both shifts and rotations in the LED array.
- Custom Pupil Layer: We developed a custom ReLU-based layer to implement a differentiable pupil function for LED repositioning.
- Support Spectral Reset: The reconstructed object is periodically reset to avoid residual frequencies artifacts after LED re-positioning.

EXPERIMENTS

We compare reconstructions from FPM captures of the USAF test chart by Zheng

- Fig. 2: FPM reconstruction from simulated captures with a large initial LEDs positioning error:
- (a) Reconstruction without positioning correction.
- (b) Reconstruction with self-calibrated the LEDs
 - geometry.
- (c) The calibrated (optimized) wave vectors for the matrix of LEDs (x are the original Zheng et al. positions, O are the perturbated initial positions and \Box are the final self-calibrated positions).

Self-calibration can cope with large initial position errors.

REFERENCES

et al. [4].

[1] G. Zheng *et al.*, "Wide field, high-resolution Fourier ptychographic microscopy", Nature Photonics, vol. 7, no. 9, pp. 739–745, 2013. [2] S. Jiang *et al.*, "Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow", Biomedical Optics *Express*, vol. 9, no. 7, pp. 3306–3319, 2018.

[3] M. Sun *et al.*, "Neural network model combined with pupil recovery for Fourier ptychographic microscopy", Optics Express, vol. 27, no. 17, pp. 24161–24174, 2019.

[4] https://github.com/SmartImagingLabUConn/Fourier-Ptychography

CONCLUSION

a self-calibrating FPM We propose reconstruction with LEDs position correction, that:

- improves reconstruction, especially the phase image,
- CI works both for precisely hand-calibrated captures, and coarse misalignments,
- 2024 alleviates the need for precise calibration Oct of the LED setup.

julianandamurie@gmail.com, patrick.horain@telecom-sudparis.eu Contact

https://www.telecom-sudparis.eu

2024