
RELATIONAL REPRESENTATION DISTILLATION
–SUPPLEMENTARY MATERIAL–

1. ALGORITHM

Algorithm 1 provides the pseudo-code of RRD.

2. IMPLEMENTATION DETAILS

We implement RRD in PyTorch following the implementation
of CRD1.

2.1. Baseline Methods

We compare our approach to the following state-of-the-art
methods from the literature: (1) Knowledge Distillation (KD)
[1]; (2) FitNets: Hints for Thin Deep Nets [2]; (3) Attention
Transfer (AT) [3]; (4) Similarity-Preserving Knowledge Distil-
lation (SP) [4]; (5) Correlation Congruence (CC) [5]; (6) Vari-
ational Information Distillation for Knowledge Transfer (VID)
[6]; (7) Relational Knowledge Distillation (RKD) [7]; (8)
Learning Deep Representations with Probabilistic Knowledge
Transfer (PKT) [8]; (9) Knowledge Transfer via Distillation
of Activation Boundaries Formed by Hidden Neurons (AB)
[9]; (10) Paraphrasing Complex Network: Network Compres-
sion via Factor Transfer (FT) [10]; (11) A Gift from Knowl-
edge Distillation: Fast Optimization, Network Minimization
and Transfer Learning (FSP) [11]; (12) Like What You Like:
Knowledge Distill via Neuron Selectivity Transfer (NST) [12];
(13) Contrastive Representation Distillation (CRD) [13]; (14)
A Comprehensive Overhaul of Feature Distillation (OFD); (15)
Rethinking Soft Labels for Knowledge Distillation: A Bias-
Variance Tradeoff Perspective (WSLD) [14]; (16) Respecting
Transfer Gap in Knowledge Distillation (IPWD) [15]; (17)
Knowledge Distillation via Softmax Regression Representa-
tion Learning (SRRL) [16]; (18) Cross-Layer Distillation with
Semantic Calibration (SemCKD) [17]; (19) Distilling Knowl-
edge via Knowledge Review (ReviewKD) [18]; (20) Knowl-
edge Distillation with the Reused Teacher Classifier (SimKD)
[19]; (21) Searching A Fast Knowledge Distillation Process
via Meta Optimization (DistPro) [20]; (22) Knowledge Distil-
lation via N-to-One Representation Matching (NORM) [21];
(23) Information Theoretic Representation (ITRD) [22]; (24)
Feature Kernel Distillation (FKD) [23]; (25) Complementary

1Available at: https://github.com/HobbitLong/
RepDistiller.

Relation Contrastive Distillation (CRCD) [24]; (26) Distill-
ing Knowledge from Self-Supervised Teacher by Embedding
Graph Alignment (EGA) [25]; (27) Wasserstein Contrastive
Representation Distillation (WCoRD) [26].

2.2. Network Architectures

We use the following network architectures as described in
[13]: (1) Wide Residual Network (WRN) [27], where WRN-
d-w represents a wide ResNet with depth d and width factor
w; (2) ResNet [28], where resnet-d represents a CIFAR-style
ResNet with 3 groups of basic blocks having 16, 32, and 64
channels, respectively, and resnet-8 ×4 and resnet-32 ×4 indi-
cate a 4-times wider network with 64, 128, and 256 channels;
(3) ResNet [28], where ResNet-d represents an ImageNet-
style ResNet with Bottleneck blocks and more channels; (4)
MobileNet-v2 [29], using a width multiplier of 0.5 in our
experiments; (5) VGG [30], where the VGG network used
is adapted from its original ImageNet counterpart; and (6)
ShuffleNet-v1 [31] and ShuffleNet-v2 [32], which are adapted
for efficient training with input sizes of 32× 32.

2.3. Optimization

All methods evaluated in our experiments use SGD with 0.9
Nesterov momentum. For CIFAR-100, we initialize the learn-
ing rate as 0.05, and decay it by 0.1 every 30 epochs after the
first 150 epochs until the last 240 epoch. For MobileNet-v2,
ShuffleNet-v1, and ShuffleNet-v2, we use a learning rate of
0.01 as this learning rate is optimal for these models in a grid
search, while 0.05 is optimal for other models. The batch size
is set to 64 for CIFAR-100, and the weight decay is set to
5× 10−4. For ImageNet, the initial learning rate is set to 0.1
and then divided by 10 at the 30th, 60th, and 90th epochs of
the total 120 training epochs. The mini-batch size is set to
256, and the weight decay is set to 1× 10−4. All results are
reported as means over three trials, except for the results on
ImageNet, which are reported in a single trial.

3. RESULTS

3.1. Results on CIFAR-100

Table 1 and Table 2 provide a comprehensive overview of
the top-1 accuracies of student networks trained with various



Algorithm 1 Pseudocode of RRD in a PyTorch-like style.

# f_t, f_s: outputs at the penultimate layer of teacher and student networks
# t_dim: The input feature dimension for the teacher
# s_dim: The input feature dimension for the student
# feat_dim: The projection feature space dimension
# nce_k: number of instances in queue
# nce_t_s, nce_t_t: the temperature paramters for student and teacher networks
# N: batch size

class RRDLoss(nn.Module):
def __init__(self, s_dim, t_dim, feat_dim, nce_k=16384, nce_t_t=0.07, nce_t_s=0.04):

super(RRDLoss, self).__init__()

# embedding layer
self.embed_s = nn.Linear(s_dim, feat_dim)
self.embed_t = nn.Linear(t_dim, feat_dim)

# memory buffer
self.register_buffer("queue", torch.randn(nce_k, feat_dim))
self.queue = F.normalize(self.queue, dim=0)
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))

def forward(self, f_s, f_t):
f_s = self.embed_s(f_s)
f_t = self.embed_t(f_t)

f_s = F.normalize(f_s, dim=1)
f_t = F.normalize(f_t, dim=1)

l_s = torch.einsum("nc,kc->nk", [f_s, self.queue])
l_t = torch.einsum("nc,kc->nk", [f_t, self.queue])

loss = -torch.sum(
F.softmax(l_t / self.nce_t_t, dim=1) *
F.log_softmax(l_s / self.nce_t_s, dim=1), dim=1).mean()

self._dequeue_and_enqueue(f_t)

return loss

state-of-the-art distillation techniques across a wide range of
teacher-student architectural combinations. Unlike the main
text, which summarizes a subset of results, these tables offer
an extended comparison involving more models and training
configurations. Our proposed method, RRD, shows strong
performance across diverse network architectures and teacher-
student pairs. RRD performs nearly as well as the top methods
in knowledge distillation, achieving accuracy rates very close
to the best-performing techniques, indicating an effective bal-
ance between simplicity and performance.

3.2. Results on ImageNet

Table 3 presents the top-1 accuracies of student networks
trained with various distillation techniques across different
teacher-student architectural pairings. These findings affirm
the scalability of our RRD method on large datasets like Im-
ageNet, highlighting its ability to effectively distill complex
models. Our approach achieves competitive results, surpassing
KD across all tested architectures. Furthermore, RRD shows
improvement across different architectures, demonstrating its
effectiveness in various distillation scenarios. The combination
of RRD with KD further improves results among the compared
techniques in most cases.

3.3. Capturing Inter-class Correlations

Cross-entropy loss overlooks the relationships among class log-
its in a teacher network, often resulting in less effective knowl-
edge transfer. Distillation techniques that use ”soft targets”,
such as those described by [1], have successfully captured
these relationships, improving student model performance.
Figure 1 assesses the effectiveness of different distillation
methods on the CIFAR-100 KD task using WRN-40-2 as the
teacher and WRN-40-1 as the student. We compare students
trained without distillation, with attention transfer [3], with KL
divergence [1], and with our proposed RRD method. Our find-
ings show that RRD achieves close alignment between teacher
and student logits, as evidenced by reduced differences in their
correlation matrices. While RRD does not match CRD [13] in
terms of exact correlation alignment, it significantly enhances
learning efficiency and reduces error rates. The smaller dis-
crepancies between teacher and student logits indicate that the
RRD objective captures a substantial portion of the correlation
structure in the logits, resulting in lower error rates, though
CRD achieves a slightly closer match.



Table 1: Test top-1 accuracy (%) of student networks on CIFAR-100, comparing students and teachers of the same architecture
using various distillation methods. The values in bold indicate the maximum of each column. ↑ denotes outperformance over KD
and ↓ denotes underperformance.

Teacher WRN-40-2 WRN-40-2 resnet-56 resnet-110 resnet-110 resnet-32x4 VGG-13
Student WRN-16-2 WRN-40-1 resnet-20 resnet-20 resnet-32 resnet-8x4 VGG-8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD [1] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [2] 73.58 (↓) 72.24 (↓) 69.21 (↓) 68.99 (↓) 71.06 (↓) 73.50 (↑) 71.02 (↓)
AT [3] 74.08 (↓) 72.77 (↓) 70.55 (↓) 70.22 (↓) 72.31 (↓) 73.44 (↑) 71.43 (↓)
SP [4] 73.83 (↓) 72.43 (↓) 69.67 (↓) 70.04 (↓) 72.69 (↓) 72.94 (↓) 72.68 (↓)
CC [5] 73.56 (↓) 72.21 (↓) 69.63 (↓) 69.48 (↓) 71.48 (↓) 72.97 (↓) 70.81 (↓)
VID [6] 74.11 (↓) 73.30 (↓) 70.38 (↓) 70.16 (↓) 72.61 (↓) 73.09 (↓) 71.23 (↓)
RKD [7] 73.35 (↓) 72.22 (↓) 69.61 (↓) 69.25 (↓) 71.82 (↓) 71.90 (↓) 71.48 (↓)
PKT [8] 74.54 (↓) 73.45 (↓) 70.34 (↓) 70.25 (↓) 72.61 (↓) 73.64 (↑) 72.88 (↓)
AB [9] 72.50 (↓) 72.38 (↓) 69.47 (↓) 69.53 (↓) 70.98 (↓) 73.17 (↓) 70.94 (↓)
FT [10] 73.25 (↓) 71.59 (↓) 69.84 (↓) 70.22 (↓) 72.37 (↓) 72.86 (↓) 70.58 (↓)
FSP [11] 72.91 (↓) n/a 69.95 (↓) 70.11 (↓) 71.89 (↓) 72.62 (↓) 70.33 (↓)
NST [12] 73.68 (↓) 72.24 (↓) 69.60 (↓) 69.53 (↓) 71.96 (↓) 73.30 (↓) 71.53 (↓)
CRD [13] 75.48 (↑) 74.14 (↑) 71.16 (↑) 71.46 (↑) 73.48 (↑) 75.51 (↑) 73.94 (↑)
CRD+KD [13] 75.64 (↑) 74.38 (↑) 71.63 (↑) 71.56 (↑) 73.75 (↑) 75.46 (↑) 74.29 (↑)
OFD [33] 75.24 (↑) 74.33 (↑) 70.38 (↓) n/a 73.23 (↑) 74.95 (↑) 73.95 (↑)
WSLD [14] n/a 73.74 (↑) 71.53 (↑) n/a 73.36 (↑) 74.79 (↑) n/a
IPWD [15] n/a 74.64 (↑) 71.32 (↑) n/a 73.91 (↑) 76.03 (↑) n/a
SRRL [16] n/a 74.64 (↑) n/a n/a n/a 75.39 (↑) n/a
SemCKD [17] n/a 74.41 (↑) n/a n/a n/a 76.23 (↑) n/a
ReviewKD [18] 76.12 (↑) 75.09 (↑) 71.89 (↑) n/a 73.89 (↑) 75.63 (↑) 74.84 (↑)
SimKD [19] n/a 75.56 (↑) n/a n/a n/a 78.08 (↑) n/a
DistPro [20] 76.36 (↑) n/a 72.03 (↑) n/a 73.74 (↑) n/a n/a
NORM [21] 75.65 (↑) 74.82 (↑) 71.35 (↑) 71.55 (↑) 73.67 (↑) 76.49 (↑) 73.95 (↑)
NORM+KD [21] 76.26 (↑) 75.42 (↑) 71.61 (↑) 72.00 (↑) 74.95 (↑) 76.98 (↑) 74.46 (↑)
NORM+CRD [21] 76.02 (↑) 75.37 (↑) 71.51 (↑) 71.90 (↑) 73.81 (↑) 76.49 (↑) 73.58 (↑)
WCoRD [26] 75.88 (↑) 74.73 (↑) 71.56 (↑) 71.57 (↑) 73.81 (↑) 75.95 (↑) 74.55 (↑)
WCoRD+KD [26] 76.11 (↑) 74.72 (↑) 71.92 (↑) 71.88 (↑) 74.20 (↑) 76.15 (↑) 74.72 (↑)
CRCD [24] 76.67 (↑) 75.95 (↑) 73.21 (↑) 72.33 (↑) 74.98 (↑) 76.42 (↑) 74.97 (↑)
FKD [23] n/a n/a n/a n/a n/a 75.57 (↑) 73.78 (↑)
ITRD (corr) [22] 75.85 (↑) 74.90 (↑) 71.45 (↑) 71.77 (↑) 74.02 (↑) 75.63 (↑) 74.70 (↑)
ITRD (corr+mi) [22] 76.12 (↑) 75.18 (↑) 71.47 (↑) 71.99 (↑) 74.26 (↑) 76.19 (↑) 74.93 (↑)
RRD (ours) 75.01 (↑) 73.55 (↑) 70.71 (↑) 70.72 (↑) 73.10 (↑) 74.48 (↑) 73.99 (↑)
RRD+KD (ours) 75.66 (↑) 74.39 (↑) 72.19 (↑) 71.74 (↑) 73.54 (↑) 75.08 (↑) 74.32 (↑)



Table 2: Test top-1 accuracy (%) of student networks on CIFAR-100 involving students and teachers from different architectures,
using various distillation methods. The values in bold indicate the maximum of each column. ↑ denotes outperformance over KD
and ↓ denotes underperformance.

Teacher VGG-13 ResNet-50 ResNet-50 ResNet-32x4 ResNet-32x4 WRN-40-2
Student MobileNet-v2 MobileNet-v2 VGG-8 ShuffleNet-v1 ShuffleNet-v2 ShuffleNet-v1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.5 71.82 70.5
KD [1] 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [2] 64.14 (↓) 63.16 (↓) 70.69 (↓) 73.59 (↓) 73.54 (↓) 73.73 (↓)
AT [3] 59.40 (↓) 58.58 (↓) 71.84 (↓) 71.73 (↓) 72.73 (↓) 73.32 (↓)
SP [4] 66.30 (↓) 68.08 (↑) 73.34 (↓) 73.48 (↓) 74.56 (↑) 74.52 (↓)
CC [5] 64.86 (↓) 65.43 (↓) 70.25 (↓) 71.14 (↓) 71.29 (↓) 71.38 (↓)
VID [6] 65.56 (↓) 67.57 (↑) 70.30 (↓) 73.38 (↓) 73.40 (↓) 73.61 (↓)
RKD [7] 64.52 (↓) 64.43 (↓) 71.50 (↓) 72.28 (↓) 73.21 (↓) 72.21 (↓)
PKT [8] 67.13 (↓) 66.52 (↓) 73.01 (↓) 74.10 (↑) 74.69 (↑) 73.89 (↓)
AB [9] 66.06 (↓) 67.20 (↓) 70.65 (↓) 73.55 (↓) 74.31 (↓) 73.34 (↓)
FT [10] 61.78 (↓) 60.99 (↓) 70.29 (↓) 71.75 (↓) 72.50 (↓) 72.03 (↓)
NST [12] 58.16 (↓) 64.96 (↓) 71.28 (↓) 74.12 (↑) 74.68 (↑) 76.09 (↑)
CRD [13] 69.73 (↑) 69.11 (↑) 74.3 (↑) 75.11 (↑) 75.65 (↑) 76.05 (↑)
CRD+KD [13] 69.94 (↑) 69.54 (↑) 74.58 (↑) 75.12 (↑) 76.05 (↑) 76.27 (↑)
OFD [33] 69.48 (↑) 69.04 (↑) n/a 75.98 (↑) 76.82 (↑) 75.85 (↑)
WSLD [14] n/a 68.79 (↑) 73.80 (↓) 75.09 (↑) n/a 75.23 (↑)
IPWD [15] n/a 70.25 (↑) 74.97 (↑) 76.03 (↑) n/a 76.44 (↑)
SRRL [16] n/a n/a n/a 75.18 (↑) n/a n/a
SemCKD [17] n/a n/a n/a n/a 77.62 (↑) n/a
ReviewKD [18] 70.37 (↑) 69.89 (↑) n/a 77.45 (↑) 77.78 (↑) 77.14 (↑)
SimKD [19] n/a n/a n/a 77.18 (↑) n/a n/a
DistPro [20] n/a n/a n/a 77.18 (↑) 77.54 (↑) 77.24 (↑)
NORM [21] 68.94 (↑) 70.56 (↑) 75.17 (↑) 77.42 (↑) 78.07 (↑) 77.06 (↑)
NORM+KD [21] 69.38 (↑) 71.17 (↑) 75.67 (↑) 77.79 (↑) 78.32 (↑) 77.63 (↑)
NORM+CRD [21] 69.17 (↑) 71.08 (↑) 75.51 (↑) 77.50 (↑) 77.96 (↑) 77.09 (↑)
WCoRD [26] 69.47 (↑) 70.45 (↑) 74.86 (↑) 75.40 (↑) 75.96 (↑) 76.32 (↑)
WCoRD+KD [26] 70.02 (↑) 70.12 (↑) 74.68 (↑) 75.77 (↑) 76.48 (↑) 76.68 (↑)
CRCD [24] n/a n/a n/a n/a n/a n/a
FKD [23] n/a n/a 74.61 (↑) 75 (↑) n/a n/a
ITRD (corr) [22] 69.97 (↑) 71.41 (↑) 75.71 (↑) 76.8 (↑) 77.27 (↑) 77.35 (↑)
ITRD (corr+mi) [22] 70.39 (↑) 71.34 (↑) 75.49 (↑) 76.91 (↑) 77.40 (↑) 77.09 (↑)
RRD (ours) 67.93 (↑) 68.84 (↑) 74.01 (↑) 74.11 (↑) 74.80 (↑) 74.98 (↑)
RRD+KD (ours) 69.98 (↑) 69.13 (↑) 74.26 (↑) 75.18 (↑) 76.29 (↑) 76.31 (↑)



Table 3: Test top-1 (%) on ImageNet validation set using
various distillation methods. The table compares students and
teachers of the same and different architecture. The values in
bold indicate the maximum of each column while underlined
values mark the second best.

Teacher ResNet-34 ResNet-50 ResNet-50
Student ResNet-18 ResNet-18 MobileNet
Teacher 73.31 76.16 76.16
Student 69.75 69.75 69.63
KD [1] 70.67 71.29 70.49
AT [3] 71.03 71.18 70.18
SP [4] 70.62 71.08 n/a
CC [5] 69.96 n/a n/a
VID [6] n/a 71.11 n/a
RKD [7] 70.40 n/a 68.50
AB [9] n/a n/a 68.89
FT [10] n/a n/a 69.88
FSP [11] 70.58 n/a n/a
NST [12] 70.29 n/a n/a
CRD [13] 71.17 71.25 69.07
OFD [33] 71.03 n/a 71.33
WSLD [14] 72.04 n/a 71.52
IPWD [15] 71.88 n/a 72.65
RRD (ours) 71.22 71.33 70.66
RRD+KD (ours) 71.40 71.51 71.83
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