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Supplementary Material

In this supplementary material, we first presents further
experimental studies, including the impact of synonyms on
VocAda-LLM and VocAda-CLIP, as well as a computational
cost study of the proposed method. Next, we detail the evalua-
tion metrics in Supp. B. Lastly, Supp. C provides the complete
prompts for the Image Captioner (IC) and the LLM-based
Class Selector (CS), along with their design details. We will
publicly release our code and the intermediate results upon
publication.

A. FURTHER STUDIES

Table 5: Influence of synonyms on VocAda-LLM, using the
Detic detector and the OVE-COCO benchmark.

Method APnovel
50 APbase

50 APall
50 APnovel

50 APbase
50 APall

50

Baseline 27.8 51.1 45.0 - - -

w/o Synonyms 30.5 49.5 44.5 +2.7 -1.6 -0.5
w/ Synonyms 30.6 52.9 47.1 +2.8 +1.8 +2.1

Influence of synonyms on VocAda-LLM. Including syn-
onyms for class names in the user-defined vocabulary when
prompting the LLM-based CS module is a simple but crucial
design choice, as shown in Tab. 5. During our initial explo-
ration, we found, for example, that without synonyms some
large and obvious objects like “Couch" or “TV” were often
missed by the LLM-based CS of VocAda, even though they
were included in the image descriptions. This occurred be-
cause these categories were phrased differently in the captions
(e.g. , “Sofa” or “Television”) and, hence, the LLM-based CS
processed them as not relevant and discarded them. Including
synonyms as cues in the system prompt of the LLM prevents
this erroneous filtering, resulting in superior performance.
Influence of synonyms on VocAda-CLIP. Using synonyms
in the CLIP-based CS is less straightforward. Implementing
synonyms for nouns would require querying an LLM at test
time for each noun phrase, adding significant extra cost. We
experimented with using synonyms for the class names queried
offline, but this had no effect on the VocAda-CLIP results.
Study of computational cost. Tab. 6 compares inference
speed and computational requirements. Metrics were mea-
sured on a Tesla V100 (32GB) using Detic Swin-B [5] as the
detector, LLaVA-Next-7B [6] as the VLM, Llama3-8B [18]
as the LLM, and CLIP ViT-L/14 [4], with the COCO-val [9]
dataset. Although inference time increases, our method re-
quires manageable resources (17GB for VocAda-CLIP and
31GB for VocAda-LLM), making it suitable for real-world ap-
plications. While VLMs and LLMs do slow down the vanilla

Table 6: Study of Computational Cost. We evaluate the
inference time and computational cost of the baseline detector
(Detic Swin-B) and its integrations with VocAda-CLIP and
VocAda-LLM on a Tesla V100 (32GB) using the COCO-val
dataset with a batch size of 1. VocAda-LLM employs LLaVA-
Next-7B [6] as the VLM and Llama3-8B [18] as the LLM,
while VocAda-CLIP uses CLIP ViT-L/14.

Methods Speed (sec/img) GPU Requirement

Detic 0.115 8 GB

Detic w. VocAda-CLIP 5.572 17 GB
Detic w. VocAda-LLM 10.699 31 GB

detection pipeline, this can be mitigated with advanced deploy-
ment strategies like TensorRT or SGLang, which can speed up
LLaVA and Llama3 by 6X and 2X, respectively.

Importantly, we believe that current computational limits
should not hinder exploring new paradigms. Large VLMs and
LLMs are increasingly integrated into detection pipelines and
co-run with detectors in applications like autonomous driving.
In such systems, VocAda adds minimal overhead by utilizing
existing VLM outputs (captions).
Additional qualitative results. We present additional qual-
itative comparison of Oracle, Baseline, VocAda-CLIP and
VocAda-LLM in Fig. 7. As observed, the baseline detector
using the full vocabulary is easily confused by distracting
classes, incorrectly classifying a “Curling” on a sports court
as a “Teapot”. VocAda alleviates this confusion by adapting
the vocabulary to the input image based on its interpretation
of the semantic context. Even when VocAda does not lead to
a correct detection, at least it avoids a mis-detection (see the
curling stone in the right panel).

B. DETAILS ON THE EVALUATION METRICS

As illustrated in Fig. 8, given a predicted bounding box and the
closest ground truth box, the Intersection over Union (IoU) is
the ratio of their intersection area to their union area. For each
object class, predictions are sorted by their confidence scores
in descending order, and Average Precision (AP) is calculated
as the area under the precision-recall curve. This combines
precision and recall to provide a single performance measure
for detection tasks.

Mean Average Precision (mAP) is the mean of the AP
values, averaged across novel (unseen), base (seen), or all
classes, denoted by APnovel, APbase, and APall, respectively.
AP50 refers to mAP when IoU is considered with a threshold
of 0.5. Otherwise, AP values are computed for thresholds from
0.5 to 0.95 in steps of 0.05 and then averaged.
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Fig. 7: Additional Qualitative Results on Objects365. We
use Detic (Swin-B backbone) trained on LVIS and ImageNet-
21k as the OvOD detector. Correct and incorrect detections
appear in green and pink, respectively, with a 0.5 confidence
threshold.
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Fig. 8: Example of Intersection over Union (IoU) calculation.

Taking the calculation of AP50 as an example, we start
by computing the IoU for each predicted bounding box and
ground truth pair. A prediction is considered a True Positive
(TP) if: i) its IoU is 0.50 or higher, and ii) its predicted class
label matches the ground truth; otherwise, it’s a False Positive
(FP). Detections are sorted by confidence scores in descending
order, and for each prediction, we evaluate its IoU and class

label against the ground truth. Precision and recall are calcu-
lated at each detection: precision is the ratio of TPs to the total
number of predictions (TPs + FPs), and recall is the ratio of
TPs to the total number of ground truth objects (TPs + FNs).
These values are used to plot the precision-recall curve, and the
area under this curve represents the AP50 measurement. The
final AP50 is averaged across all evaluated classes, summariz-
ing the model’s performance in terms of both localization and
classification for the test dataset.

C. PROMPT DETAILS

In this section, we provide the complete prompts used in Vo-
cAda and elaborate on the design choices for prompting.

C.1. Prompting Image Captioner (IC)

The comprehensiveness of the description generated by the
IC is crucial for the subsequent steps of VocAda. The im-
age description should capture as many categories present in
the current image as possible. Even state-of-the-art VLMs
often neglect background objects in images, focusing on more
prominent foreground objects when prompted with a simple
prompts such as “List all the objects visible in this image”. For
instance, as shown in Fig. 9(a), although the cars and trucks
in the background are clearly visible, the IC only describes
the foreground object “bicycle”. To address this, as shown
in Fig. 9(b), we propose a prompt strategy that instructs the
IC to not only list all visible objects but also categorize them
into primary and secondary groups. Even though we do not
need the grouping results per se, this technique effectively
guides the IC to comprehensively describe both large and fo-
cused foreground objects (primary) and small and background
objects (secondary), such as “Traffic Light” in Fig. 9(b).

In Fig. 9(b), we show the full prompt used for the IC
(LLaVA-Next-7B [6]) in VocAda to describe the image, creat-
ing textual measurements of the objects visible in the image.

In addition, there are two design choices worth mentioning.
First, in our prompt, we instruct the IC to list a group of
objects together (e.g. , “a cluster of red apples”) instead of
one by one. This technique prevents the IC from generating
repetitive patterns, which are lengthy and not useful for the
following steps. The goal of the IC is to comprehensively
capture object categories likely to appear in the current images.
Therefore, we further ask the IC to provide “best guesses” for
unclear items in the prompt. This design force the IC to reason
possible objects that might be present in the image based on
its interpretation. While this might introduce extra noise, the
Class Selector module can alleviate most of them, especially if
they are unrelated to the global image context. In VocAda, we
use the exact prompt shown in Fig. 9(b) for all experiments.



List all the objects visible in this image

In the image, I see the following objects:
1. A blue bicycle parked on the sidewalk.
2. A black bicycle seat on the blue bicycle.
3. A black bicycle handlebar on the blue bicycle.
4. A black bicycle chain.
5. A black bicycle rear cassette.
6. A black bicycle pedal.
7. A black bicycle kickstand.
8. A black bicycle front brake.
9. A black bicycle rear brake.
10. A black bicycle front wheel.
11. A black bicycle rear wheel.
…

(a) List all objects

Ground-truth categories: Bicycle,  Car, Truck, Traffic Light Ground-truth categories: Bicycle,  Car, Truck, Traffic Light

Identify and list every object visible in the
image, including those in both the
foreground and background.

Please categorize the objects into primary
(larger or main focus) and secondary
(smaller, background, or less noticeable)
categories, if applicable.

For objects that are part of a group or
collection, indicate this by listing them
together (e.g., 'a cluster of red apples’).

Ambiguous or unclear items should be
described with your best guess.

In the image, I see the following objects:

Primary Objects:
1. A blue bicycle with a black seat and handle bars.
Secondary Objects:
2. A black car parked on the side of the street.
3. A silver car parked on the side of the street.
4. A white van parked on the side of the street.
5. A white truck parked on the side of the street.
6. A silver car driving on the street.
7. A traffic light with a red light illuminated.
8. A tree trunk on the side walk.
9. A crosswalk painted on the street.
10. A gray concrete curb.
…

(b) List all the primary and secondary objects (ours)

Fig. 9: Comparison of image captioner prompts. (a) A simple prompt is used to list all the visible objects in the image. (b) We
design a better prompt to improve the comprehensiveness of the description by instructing the captioner to list primary and
secondary objects. The ground-truth categories that are mentioned by the output caption are highlighted in Green .

C.2. Prompting LLM as Class Selector (CS)

In Fig. 10, we present the complete system and customer
prompts used for the LLM Proposal-based CS in VocAda.
Specifically, we first instantiate a LLM agent, such as Llama3-
8B [18], with a system prompt that includes a task instruction
and the user-defined vocabulary with their synonyms. The
task instruction specifies the input query, the generated image
caption SI provided by the IC and the corresponding extracted
noun phrases PI from the NE, that the LLM will receive dur-
ing inference. It then guides the LLM with a detailed task
description, which is to select relevant categories likely to ap-

pear in the image from the embedded user-defined vocabulary
based on the input, taking also synonyms into consideration.
Subsequently, the LLM is instructed with the output format of
the selected categories (prefixing each category name with an
asterisk “*”) for easier post parsing. This LLM instantiation is
conducted before large scale inference.

Therefore, during inference, the LLM-based CS takes the
complete image description SI and the corresponding noun
phrases PI as the user input without any additional instructions
and automatically outputs a selected category set as C̃I .



You will be provided with a detailed image description alongside extracted noun phrases as queries.

Your task is to map these details to the predefined categories of interest list, taking into account synonyms for each
category. Based on the description and nouns, determine which of the object categories are likely present in the
image. Consider synonyms to accurately match items to categories. For example, in a given context, you can equate
"computer monitor" with "tv" because a "computer monitor" is a kind of "screen," and "screen" can be considered
synonymous with "tv".

List the category names that likely appear in the image, each prefixed with an asterisk "*". Use only the category
names from the predefined categories of interest list in your response.

Full Caption:

LLM

Predefined Categories of Interest:
1. “Person”: [“human”, “somebody”, “someone”, “human being”, “individual”]
2. “Bicycle”: [“cycle”, “two-wheeled vehicle”, “bike”, “pushbike”, “pedal bike”]
3. “Car”: [“automobile”, “motorcar”, “vehicle”, “auto”, “wheels”]
4. “Train”: [“railway”, “tram”, “metro”, “rail car”, “express”]
5. “Boat”: [“kayak”, “ship”, “yacht”, “watercraft”, “ferry”]
6. “Bench”: [“seat”, “chair”, “stand”, “lounge”, “stool”]
7. “TV”: [“screen”, “television”, “monitor”, “display”, “telly”]
8. …..

System
Prompt

Input
Query

In the image, I see the following objects:

Primary Objects:
1. A blue bicycle with a black seat and handle bars.

Secondary Objects:
1. A black car parked on the side of the street.
2. A silver car parked on the side of the street.
3. A white van parked on the side of the street.
4. A white truck parked on the side of the street.
5. A silver car driving on the street.
6. A traffic light with a red light illuminated.
7. A tree trunk on the side walk.
8. A crosswalk painted on the street.
9. A gray concrete curb.
…

The objects are categorized based on their size, prominence, and focus in the image. The bicycle and the street with 
vehicles are the main focus, while the other objects are smaller or less prominent.

Extracted Nouns:
“blue bicycle”, “black seat”, “handle bars”, “black car”, “side of the street”, “silver car”, “side of the street”, “white van”,
“side of the street”, “white truck”, “side of the street”, “silver car”, “street”, “traffic light”, “red light”, “tree trunk”, “side 
walk”, “crosswalk”, “street”, “gray concrete curb”, “objects”, “size”, “prominence”, “focus”, “image”, “bicycle”, “street”, 
“vehicles”, “main focus”, “other objects”, …

Inserted
Customer

Prompt

Fig. 10: Complete prompts used the LLM Proposal based Class Selector (CS). Top: The system prompt includes the user
defined categories enriched with a set of synonyms and the task instruction. The latter guides the LLM to select from the category
list the ones that are relevant given as input an image description and the set of extracted noun phrases. This system prompt is
used to instantiate the LLM agent as the CS. Bottom: During inference, the full image description, (SI provided by the IC)
alongside the extracted noun phrases (PI from the NE) are fed to the system as customer prompt input. Subsequently, the LLM
automatically propose the selected category names based on this input.
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