
SUPPLEMENTARY MATERIAL FOR “GEOMETRY REGULARIZED POINT CLOUD
AUTOENCODER”

1. INTRODUCTION

In this supplementary material, we present more discussions
on our experimental setup, as well as provide more exper-
imental results and analysis on GRAE. We additionally in-
clude one more downstream task—object part segmentation—
to demonstrate the usefulness of our proposal.

2. MORE EXPERIMENTAL SETTINGS AND
DISCUSSIONS

2.1. EMD Computation

We hereby discuss more on the existing implementations of
EMD. For applications in 2D image processing literature, an
excellent, if dated, discussion is provided in [13], Section 2.1.
In summary, the optimization problem underlying EMD can
be framed as an assignment problem which is solvable us-
ing the Hungarian algorithm [7] in O(N3) time, while O(ε)
approximations (either using Sinkhorn, i.e., entropic approx-
imation [2], or Bertsekas’ auction algorithm [3]) can be com-
puted in O(N2/ε) time. Recent theoretical refinements for
approximation algorithms have made incremental improve-
ments in the above rates (cf. [8]).

The two most common implementations of EMD in point
cloud literature are those provided by [4] and [9] respectively.
The first is faster in practice (although not comparable to CD).
However, it is considerably divergent from Bertsekas’ auction
algorithm, which it claims to follow, and has no known theo-
retical guarantees. The latter is known to be an iterative algo-
rithm that produces approximate solutions but does not have
convergence guarantees. Newer articles using these imple-
mentations (e.g., [15]) in some cases report adverse findings
for EMD in comparison to CD as a training loss due to the in-
ability to find a near-optimal matching for moderately-sized
point clouds.

Our EMD computation uses the entropic approximation-
based multiscale Sinkhorn algorithm provided by the geomloss
library [5], which well approximates the true EMD (with
O(ε) error) while having reasonable computational cost of
O(N2/ε), and is also a GPU implementation.

While the entropic approximation algorithm used in
geomloss is slower in practice compared to the imple-
mentation in [9], it produces high-quality reconstructed point

clouds with no artifacts as observed with the latter [4]. We
use the penalty parameters ε = 0.1 for training and ε = 0.01
for testing.

In our experiments, EMD as a training loss has an advan-
tage, achieving comparable CD loss to CD-trained networks,
and much better EMD loss. This supports the view in the
prevailing literature that EMD, owing to its richer geometric
properties, is a better loss for point cloud tasks compared to
CD [1, 9], though the computational cost is a great concern.

2.2. Computational Complexity

The primary computational burden of our approach comes
from the calculation of covariance matrices over nearest-
neighbor graphs. However, as is standard in other point cloud
methods utilizing local covariance matrices (e.g., ([16])), we
select a set of nearest neighbor graph sizes and pre-compute
local covariance matrices for the given sizes. For inverse
computations, we further pre-process the covariance matrices
and store only their Cholesky factors. When training with
randomly rotated point clouds, since the rotation matrix is
known at train time, the Cholesky factors can be adjusted by
matrix multiplication, which is a much cheaper operation to
do online compared to the Cholesky factorization step itself.

With these pre-processing steps, our approach (GRAE)
emulates the performance of EMD in reconstructing the cor-
rect point distribution, with a much lower computational cost.
Particularly, CD-based networks take roughly 3.5 hrs to train
on average, while GRAE and GSW take about 1.5 times as
much, compared to EMD which takes 10 times as much and
is infeasible for larger point cloud sizes than those consid-
ered here. Additionally, it visually reproduces fine local fea-
tures better than either EMD or GSW, which is also reflected
in lower CD metrics. We note that all the experiments are
performed on a workstation with an NVIDIA Quadro RTX
5000 GPU (16 GB) and six Intel Silver 4214 CPUs (2.2 GHz).
Aside from the training complexity stated earlier, each of the
reconstruction experiments can be finished within one day,
while each of the segmentation and classification experiments
can be finished within 12 hrs.



Table 1: Visualization of reconstructed point clouds under various geometry learning approaches and network architectures. Note that
random rotation is applied to both training and testing. Our GRAE leads to higher geometric fidelity compared to other approaches.

Data. Architecture CD GSW EMD GRAE (Ours) Ground-truth

SN

PointMLP+L.GAN

PointNet+Folding

PointCapsNet

MN

PointMLP+L.GAN

PointNet+Folding

PointcapsNet



Table 2: Classwise segmentation accuracies for various training losses.

Class Airplane Car

Tr. Loss PN+Fold PN+MLP PM+MLP PCN Avg. PN+Fold PN+MLP PointMLP PCN Avg.

CD 78.99% 77.52% 84.16% 77.90% 79.64% 75.83% 74.08% 81.22% 80.82% 77.99%
EMD 79.15% 78.69% 84.85% 77.42% 80.03% 75.44% 75.49% 83.52% 80.23% 78.67%
GSW 80.14% 81.30% 75.56% 71.70% 77.17% 78.31% 81.29% 70.08% 78.66% 77.09%

GRAE 80.69% 79.67% 85.68% 75.32% 80.34% 78.25% 76.20% 83.48% 80.48% 79.60%
Class Chair Table

CD 87.96% 87.81% 91.17% 89.92% 89.21% 89.67% 88.26% 92.81% 91.32% 90.52%
EMD 88.16% 88.27% 91.35% 89.40% 89.29% 89.59% 89.59% 92.86% 90.24% 90.57%
GSW 88.68% 88.93% 89.58% 86.73% 88.48% 88.68% 89.89% 91.24% 88.01% 89.46%

GRAE 89.30% 88.85% 91.95% 89.59% 89.92% 90.01% 90.22% 92.86% 89.77% 90.72%

Table 3: Overall segmentation accuracy

Network
PN+Fold PN+MLP PM+MLP PCN AvgTr. Loss

CD 74.87% 71.62% 82.37% 78.16% 76.76%
EMD 74.17% 72.25% 82.36% 77.82% 76.65%
GRAE 77.16% 72.35% 84.04% 75.58% 77.28%
GSW 75.43% 79.76% 78.57% 71.89% 76.41%

CD

GRAE

Ground-truth

Fig. 1: Point collapse of training with CD is resolved by
the proposed GRAE. The three columns on the right panel
are reconstructions from PointMLP+LatentGAN, Point-
Net+Folding, and PointCapsNet, respectively.

3. MORE EXPERIMENTAL RESULTS

3.1. More Visualizations

We present more reconstruction renderings to further vali-
date the effectiveness of our proposed GRAE. Similar to the
experiments in the main text, we compare GRAE with CD,
EMD [4], and GSW [6], and focus on the following autoen-
coder architectures: PointMLP(PM)+MLP [11, 1], Point-
Net(PN)+Folding [16, 14], and PointCapsNet (PCN) [18].

The renderings of the reconstructed point clouds from
both the ShapeNet and the ModelNet datasets are visualized
in Table 1. We clearly see that compared to other methods,
our proposed GRAE retains more geometry details, present-
ing reconstructions with higher fidelity. Again, we emphasize
that our experiments apply random rotation to both training
and testing which makes the geometry reconstruction task
much more challenging.

3.2. On Point Collapse

As discussed in [1, 12], using CD for training causes an issue
called point collapse—a disproportionate number of points
(compared to the input) are clustered at a certain median loca-
tion in the reconstruction. In the first row of Fig. 1, an exam-
ple of point collapse is presented where the regions undergo-
ing the point collapse issue are also highlighted. Interestingly,
our proposed GRAE addresses the issue and leads to a more
natural point distribution, as seen in the second row of Fig. 1.
Please refer to the supplementary material for more ablation
studies and comparisons.

3.3. Segmentation

To demonstrate the validity of the codewords produced by our
proposal, we also carry out a segmentation task based on in-
termediate point encodings produced by autoencoders trained
using our proposal and other candidate losses. In this task,
DGCNN-based networks are not used owing to the fact that
they do not directly produce point encodings. For PointNet,
PointCapsuleNet, and FoldingNet, the output of the point-
wise MLP layers is taken as the point encoding, while for
PointMLP, the point embedding layer of the encoder is used
[10]. We emphasize here that the goal of the experiment is
not to demonstrate the superiority of a segmentation method
based on point embeddings. Rather, we wish to determine the
validity of point embeddings generated by point autoencoders
as bonafide representatives of the information contained in
the points, and as such, we use point embeddings generated
by the autoencoder version of PointCapsuleNet, and not the
dedicated segmentation network [17] also propose.

In Table 2, we present classification accuracies for down-
stream segmentation networks trained class-wise on the 4
largest classes in the ShapeNetPart dataset. The same train-
ing and testing setup as classification is followed, except that
we restrict the training and testing dataset to a single class
for the segmentation network. GRAE ranks among the top
2 training losses in segmentation accuracy for all pairs of
network architecture and class except one, and has the best
average accuracy in all classes. PointMLP again has the best
results, and is improved substantially by GRAE.



Table 4: Performance of different variants of GRAE. GRAEF—GRAE with fixed neighborhood size k = 8. GRAEH—GRAE
without the term LMDrec. Metrics are reported on a 10−2 scale.

Metric
Dataset ShapeNet ModelNet

Architecture GRAEF GRAEH GRAE GRAEF GRAEH GRAE

CD

PN+MLP 5.227 4.251 3.848 6.628 5.361 4.553
DGCNN+MLP 5.861 5.430 4.904 5.861 6.016 5.864

PM+MLP 5.429 4.439 4.005 6.669 5.354 4.456
PN+Fold 3.825 3.813 3.482 4.614 4.477 4.073

PCN 4.793 3.937 3.754 5.862 4.694 4.185

EMD

PN+MLP 0.840 0.894 0.730 0.739 0.704 0.575
DGCNN+MLP 1.335 1.584 1.203 1.098 1.262 1.025

PM+MLP 0.906 0.992 0.869 0.724 0.714 0.631
PN+Fold 0.790 0.638 0.524 0.888 0.604 0.508

PCN 1.338 1.201 1.115 1.209 1.049 0.954
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Fig. 2: Visualize the codewords with t-SNE in the 2D space.
The codewords are generated with PointNet [14] that is
trained under the PointNet+LatentGAN design.

Table 3 presents the results of running the segmentation
experiment with all classes combined. Here, the segmentation
accuracy numbers are smaller since the problem is now a 50-
class classification with point classes from all types of objects
pooled together, and the variability in accuracy numbers is
also higher among different architectures. However, GRAE
still has the best average accuracy. The top two numbers for
each architecture are in bold.

3.4. Visualization of codewords

To gain a deeper understanding, we also visualize the code-
words from the first 10 classes of ShapeNet with t-SNE in
2D, as is shown in Fig. 2 The codewords are generated with
the PointNet encoder [14] trained with the PointNet+MLP ar-
chitecture. We see that the codewords generated with GRAE
are generally more separable compared to those generated by
CD, e.g., the classes Lamp and Cap.

3.5. Ablation Studies

In this experiment, we study how different aspects of GRAE
contribute to its overall performance. Particularly, we experi-

ment with two variants of GRAE:
(i) GRAEF: instead of gradually shrinking the neighbor-

hood size from 10 to 5 during training, this variant fixes the
neighborhood size to be k = 8; (ii) GRAEH: this variant only
keeps half of the LMD loss during training, and term LMDrec
that computes from the perspective of the reconstructed point
cloud is removed.

In general, either fixing the neighborhood size or re-
moving LMDrec from the complete LMD loss considerably
harms the reconstruction performance, in terms of both CD
and EMD. Particularly, in GRAEF, a constant neighborhood
size hampers the learning framework to capture the geometry
details in a coarse-to-fine manner. Additionally, in GRAEH,
some reconstructed points may not be counted in the loss
computation, and thus fail to be improved via backpropaga-
tion. By varying the neighborhood as well as fully counting
the reconstruction, our proposal, GRAE, evolves into a train-
ing paradigm, differentiating it from static loss functions such
as CD and EMD.

The reconstruction performance of GRAE and these two
variants on the ShapeNet test split and the ModelNet dataset
are presented in Table 4 - the lowest loss numbers are in bold.
All models are trained only on the ShapeNet training split.
As can be seen, the (intact) GRAE almost works consistently
better than both GRAEF and GRAEH across all architectures
in terms of both the CD and EMD metrics. Again, it confirms
the effectiveness of gradually shrinking the neighborhood size
in GRAE, as well as the usefulness of including the LMDrec
term in the loss computation.

4. REFERENCES

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and
Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International conference on
machine learning, pages 40–49. PMLR, 2018. 1, 3

[2] Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet.
Near-linear time approximation algorithms for optimal trans-
port via sinkhorn iteration. Advances in neural information
processing systems, 30, 2017. 1



[3] Dimitri P Bertsekas. A new algorithm for the assignment prob-
lem. Mathematical Programming, 21(1):152–171, 1981. 1

[4] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017. 1, 3
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