
SUPPLEMENTARY MATERIAL
CAPTURE STAGE ENVIRONMENTS: A GUIDE TO BETTER MATTING

In this supplementary material, we provide additional de-
tails regarding the hardware setup of our capture stage, as
well as further training specifics. We also include qualita-
tive results to illustrate our findings more clearly, along with
visual outcomes from the downstream NeRF application. Fur-
thermore, we present experimental evaluations of how effec-
tively the student model learns from the teacher model and
discuss why a student–teacher framework is preferable to di-
rectly training on scribble data. Lastly, we discuss the limita-
tions of our approach.

1. HARDWARE AND IMPLEMENTATION

In the following, we discuss our capture stage setup and pro-
vide additional details on our dataset, the applied model, and
the training.

1.1. Capture Stage Setup

Our capture stage features 40 24.5 megapixel RGB cameras
and 46 video lights affixed to cylindrical scaffolding with a di-
ameter of 5.25 meters. The cameras are capable of capturing
75 frames per second with a sensor depth of 12 bits. Subjects
in the stage are lit by all video lights and captured by all cam-
eras simultaneously. The brightness of the lights in the stage
can be controlled, and the camera positions are static, there-
fore the backgrounds of the cameras do not change and can
be pre-captured.

1.2. Dataset, Models, and Training Details

Our approach uses three different models. A large offline
teacher model, a lightweight real-time student model and a
supervisior model for validation. As teacher, we developed
a modified version of ViTMatte-S [1] as the offline teacher
model, referred to as BgViTMatte in the following. This mod-
ification exploits the unique characteristics of capture stages
by replacing the trimaps originally required by ViTMatte-S
with background images, where we train the model in its new
configuration on the Adobe Deep Image Matting dataset [2].
Please note that due to the presence of noise in our data, we
augmented the training data with Gaussian noise with a stan-
dard deviation of up to 0.1 to improve stability. The impact
of this augmentation is demonstrated in Fig. 1.

To address common failure cases in the teacher’s predic-
tions, we analysed a set of 41 resulting alpha masks that show

Fig. 1: Influence of noise in the input images on matting. The
left image shows a matting result without introducing noise
during training, whereas the right image shows the result with
noise added to the augmentation phase during training.
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Fig. 2: The ratio of sparsely annotated data during training
significantly affects performance. Training exclusively on
scribbled data is not included in the plotted range, resulting
in an MSE of 78 · 10−4 and an SAD of 11 · 10−3.

recurring errors and annotated the respective regions. Given
the annotated failure cases, the teacher model is refined on a
hybrid dataset that combines the Adobe Deep Image Matting
dataset [2] with the capture stage content along with their cor-
responding sparse annotations. During training, 80% of each
batch is drawn from the former, while the remaining 20% are
sampled from the latter data. The proportion of these two
datasets has a significant influence on matting performance,
as shown in Fig. 2, with metrics computed on the hold-out
validation set. Notably, fine-tuning exclusively with failure
annotations results in poor predictions. We trained BgViT-
Matte for 2000 iterations with a batch size of 16, using an
initial learning rate of 5 · 10−5, scheduled to 2.5 · 10−5 after
600 iterations.

In a second phase, BgViTMatte generates high-quality
ground truth masks for a new capture stage dataset comprising
20 scenes with 29 different camera-views each (580 images in
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Fig. 3: Visual comparison of the outputs from the teacher and student models, predicted from the input image in (a). (b)
provides a zoomed-in view of a region of interest. (c) and (d) present the outputs of the teacher model ViTMatte-S [1] in its
baseline and refined configurations, respectively. Similarly, (e) and (f) show the outputs of the student model BGMV2 [3] in its
baseline and fine-tuned versions.

total). These masks were used to train our real-time student
model, based on BackgroundMattingV2 (BGMV2) [3] with
a MobileNetV2 backbone. BGMV2 employs a two-stage ar-
chitecture: a base model that generates a coarse mask from a
foreground and background image, and a second model that
improves fine details along the mask’s borders. We fine-tuned
the base model for 5 epochs, and the combined model for an
additional 10 epochs using the capture stage dataset and the
generated ground truth masks. We have kept all other hyper-
parameters and losses unchanged, and refer to [3] for more
details. As the supervisor model, we used DiffMatte [4] to
generate a validation set of 14 high-resolution masks based
on hand-drawn trimaps from various scenes and camera posi-
tions in the capture stage.

2. QUALITATIVE EVALUATION

To further analyse the impact of the task-specific refinements,
we performed a qualitative comparison of both the teacher
and student models before and after these refinements. From
Fig. 3 we can observe that the teacher model tends to pro-
duce false positives in its base configuration, which is miti-
gated through the refinement. Meanwhile, the student model
rather struggles to capture all foreground regions accurately
in its base setup. Fine-tuning on the teacher-generated data,
however, significantly improves its performance by more pre-
cisely outlining foreground elements and reducing errors.

3. DOWNSTREAM APPLICATION

A qualitative comparison of the reconstructed capture stage
content by InstantNGP, utilizing alpha masks generated by



Fig. 4: Qualitative comparison of novel views from Instant-
NGP using the original alpha masks generated by BGMV2 [3]
(left) and our improved masks (right). The erroneous matting
of the baseline not only cuts out part of the content but also
results in an unfaithful color representation to compensate for
the wrong inputs.

our proposed matting pipeline, is presented alongside results
from the baseline model in Fig. 4.

4. LEARNING CAPACITY STUDENT MODEL

To assess the student model’s learning capability, we addi-
tionally compared its predicted masks to those generated by
the teacher model on a validation dataset of 519 images taken
in the capture stage. Specifically, we evaluated the baseline
student model BGMV2 [3] with its fine-tuned counterpart in
terms of the sum of absolute difference (SAD), mean squared
error (MSE), and spatial-gradient metric (Grad). Tab. 1
demonstrate the improved alignment between the student and
teacher models after fine-tuning.

5. SCRIBBLE-BASED TRAINING OF THE STUDENT

Fine-tuning the real-time student model, BGMV2 [3], directly
on scribble data is challenging, as the second stage of this
two-stage model (designed for mask refinement) is inherently
unsuited for training on sparse annotations. To address this,
we limited fine-tuning on scribble data to the model’s first
stage. Initial experiments using a hybrid dataset composed of

MSE↓ SAD↓ Grad↓
·10−4 ·10−3 ·10−5

without fine-tuning 17.892 3.209 6.068
with fine-tuning 9.098 2.126 5.126

Table 1: Quantitative comparison of the student model’s
performance against the teacher model on validation data.
The results highlight the alignment between the student and
teacher models in terms of predicted mask quality.

Fig. 5: Potential failure cases of the matting prediction that
can occur despite fine-tuning.

scribble annotations and the Adobe Image Matting Dataset,
while keeping the second stage fix, resulted in an MSE of
89.2×10−4 and SAD of 10.4×10−3. Subsequent fine-tuning
of the mask refinement network using the Adobe Image Mat-
ting Dataset over several epochs improved performance, with
an MSE of 27.8×10−4 and an SAD of 57.5×10−4. However,
this mask refinement process alone failed to fully exploit the
potential of our student-teacher approach.

By integrating the student-teacher framework, the real-
time model can train on highly detailed masks from the
teacher model and can such produce high-quality outputs
while maintaining real-time performance.

6. LIMITATIONS

While our method has shown improvements in matting qual-
ity, it does not always guarantee accurate alpha mask pre-
dictions due to the inherent limitations of learning-based ap-
proaches. See Fig. 5 for example failure cases of the fine-
tuned BGMV2 model, showing mispredictions at object bor-
ders and an incorrect assignment of a foreground region ap-
pearing as a “hole” in the foreground.
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