ESCT3D: EFFICIENT AND SELECTIVELY CONTROLLABLE TEXT-DRIVEN 3D CONTENT
GENERATION WITH GAUSSIAN SPLATTING
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A comparison between our method, Shap-E, and Dream-
Gaussian is presented in Fig 1. Shap-E, DreamGaussian, and
our method all generate 3D content in a short amount of time.
Upon observation, it is evident that Shap-E can only gener-
ate geometrically simple content, with a lack of detail in the
generated content. Our method, with a time cost similar to
DreamGaussian, overcomes issues such as Janus and incon-
sistent viewpoints present in DreamGaussian. In contrast, our
approach is capable of generating more complex and richer
3D content. Overall, our method demonstrates superior per-
formance in both generation quality and speed compared to
all the other methods. It strikes a better balance between gen-

eration quality and efficiency.
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Fig. 1. Comparison with Shap-E and DreamGaussian.

Fig 2 shows that when we input the same text and canny
condition, the second row displays our results, where the vi-
sual effect of our multi-view prediction is significantly better
than the first row (MVControl). Due to MVControl’s poor
performance in multi-view prediction, it directly affects the
quality of its 3D generation, leading to irregular geometries.
In contrast, our method ensures multi-view consistency, so the
final generated content has more uniform and regular geome-
try.

We also demonstrate the capability of our method in artis-
tic creation in Fig 3. Fig 3 demonstrates that our framework
can effectively understand the content of images, such as the
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Fig. 2. Ours vs. MVControl: Text and Canny-Based.

character’s appearance and physical features, can also pro-
duce coherent, high-quality 3D content. Our method has a
strong ability to understand both text and images, enabling
the creation of rich and diverse 3D content. By providing
only a very brief text and the condition image to be input,
controllable content that meets the desired expectations can
be generated.
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Fig. 3. Understanding-Based Art Creation.

We further evaluate the importance of the self-optimization
process. Since 2D images serve as the foundation for gen-
erating high-quality 3D content, they set the upper limit for
the visual quality of 3D generation. As shown in the Fig
5, the right side displays the results generated using sim-
ple user prompts, which often result in low-quality outputs
with incomplete content and various issues such as Janus
problems. However, with the assistance of GPT-4V, our
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Fig. 4. The Generation Results of ESCT3D.
self-optimization process benefits from timely revisions and  such as rigged animation. The Fig 6 below show some of our
quality evaluations, leading to the image on the left. We  results with rigged animation.
demonstrate that the self-optimization process, by improving
text prompts, significantly enhances image generation qual-
ity, thereby impacting the overall quality of the generated 3D
content. This capability ultimately helps in selecting more re-
alistic and detailed images from the candidate pool, providing
a solid foundation for further 3D content generation.
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Fig. 5. Ablation of Self-Optimization. It is difficult to gener-
ate high-quality results with simple text alone. However, by
using the multi-modal iterative self-optimization framework,
the efficiency of generating high-quality content can be sig-
nificantly improved.
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Fig. 6. Spider-Man Toy Animation Results.

Since our method can extract mesh from 3D Gaussians,
these mesh can be seamlessly applied to downstream tasks,



