
SUPPLEMENTARY MATERIAL

1. IMPLEMENTATION DETAILS

We use ResNet-18 [1] to extract the input image feature. We
follow the MANO layer network from [2, 3] to recover hand
mesh. We empirically set the hyper-parameter to be λ1 =
10, λ2 = 10, λ3 = 0.1, λ4 = 0.01, λ5 = 0.1, λ6 = 10, λ7 =
10 andλ8 = 10. The dimension of the encoder latent feature
is 512. We train all parts of the network using the AdamW
optimizer for 150 epoches with a batch size of 64. We start
with an initial learning rate of 10−4 for all training settings
and lower it by a factor of 10 at the 50th and 100th epoches.
We follow [2] and use a learning rate of 1e− 6 and a physical
contact loss to refine the hand-object interaction after the 10th
epoch.

2. DATASET DETAILS

DexYCB [4] is the latest large-scale RGB-based-dataset
which contains 582k samples of hands interacting with differ-
ent objects and we evaluate using the official “S0” split. The
hand-object images in this dataset contain 10 objects modeled
from YCB objects [5] and we consider each object as a single
category.

Ho3D provides 3D annotations for multiple multi-view
sequences of hands and objects. The images in this dataset
contain 10 objects modeled also from YCB objects [5]. We
use their default training and test split to evaluate our hand-
object interaction reconstruction.

HOI4D [6] is the first category-level hand-object interac-
tion dataset which contains 2.4M RGB-D egocentric video
frames over 4000 sequences. We utilize their rigid object
frames since we focus on hand interacting with rigid objects.
This dataset consists of 7 category-level objects with over 50
similar object models for each category.

3. ABLATION STUDY

GAN Module. Our baseline models (Ours w/o GAN) re-
sults are presented in Table 1. Our model (w/o GAN) is a
pipeline without utilizing the GAN module to learn the object
shape offset. It is obvious that by using the GAN module,
our pipeline can effectively capture the difference between
the input object and the initial template (see Fig. 1). Further-
more, the GAN module significantly reduces the outliers in

the estimated mesh model, validating the effectiveness of our
proposed conditional GAN module.
Template Initialization. We also compare different template
initialization methods in Table 1. Our model (w/o Shape
Prior) represents a pipeline without utilizing an initialization
template but relies on a sphere to learn the object shape. It is
evident that using object initialization allows our pipeline can
learn the more accurately the object’s shape and pose.
Depth Maps. We show our baseline models (Ours w/o
Depth) results in Table 1. Our model (w/o Depth) represents
a pipeline without using the depth map as supervision during
the training stage. Based on the experimental results, depth
information is important for the 3D hand and object shape
reconstruction. This is because directly fitting the RGB input
to the mask map is challenging, as the mask map fails to
capture the detailed geometry of the hand or object.

4. CONTACT MAP

To enhance the quality of hand-object interaction results, we
incorporate a contact map during the refinement stage. By
following [7], we establish the ground truth contact map by
assuming that the closest distance between the hand and the
object is under 4mm. During training, we use PointNet to
determine whether the point cloud is in contact or not. In
the inference stage, this network is then used to estimate the
contact region and refine the penetration region. We provide
some examples visualization results of contact map estima-
tion Figure 2.

5. INTERACTION REFINEMENT

We provide qualitative examples for interaction refinement in
Fig. 3. We show that our model consistently demonstrates su-
perior performance across all comparisons. By incorporating
the MANO model, we further refine hand-object interactions
through the application of physical contact loss, leading to
substantial improvements in interaction refinement. This un-
derscores the efficacy of our proposed hand and object inter-
action refinement and highlights the critical role of physical
contact loss in enhancing interaction fidelity.



Dataset HOI4D DexYCB
Method MPJPE MPVPE CD ADD MPJPE MPVPE CD ADD
w/o GAN 17.31 17.40 11.90 10.6 11.20 11.28 6.8 6.1
w/o Shape Prior 17.35 17.39 10.10 9.7 10.68 11.61 7.1 6.9
w/o Depth 22.41 22.60 14.17 13.7 17.64 17.70 12.1 11.8
Ours (Only Depth) 20.14 20.16 12.48 13.12 13.05 13.49 8.5 9.1
Ours (Full) 17.30 17.38 5.70 5.90 11.15 11.20 5.0 4.6

Table 1. Ablation study on HOI4D and DexYCB test sets.

Fig. 1. Overview of our proposed GAN module results. Predicted object shape with correspondence initial template shape
demonstrates that the GAN module aids the model in learning the difference between the template and the object mesh (a), and
illustrates the GAN module boost the model to reduce the outliers (b). For each row, left to right columns correspond to RGB
input, template mesh model, the estimated mesh without the GAN module and our estimated mesh with the GAN module.

Fig. 2. Contact map results. From right to left, the input
hand-object point cloud, the ground truth contact region and
the estimated contact regions.

6. MORE QUALITATIVE RESULTS

In this section, we present additional qualitative results for
our 3D hand reconstruction in Figure 6. We provide both
the multi-view and key points results of the hand reconstruc-
tion. As shown in Figure 6, our predicted key points and hand
meshes align well with both the hand joints and surface in
the images. Moreover, the multi-view results highlight our
model’s ability to accurately estimate the invisible areas using
single-view RGB input. We also present the full hand-object
shape reconstruction qualitative comparisons in Figure 4.

7. LIMITATIONS

In our hand-object interaction pipeline, the hand pose recon-
struction pipeline utilizes the RGB image as input, with the
mask and depth maps as supervision. However, heavy ob-
ject occlusions impose limitations on our results when com-

pared to the ground truth (see Fig. 7). Even though our initial
hand meshes are not well aligned, the output meshes closely
approximate the ground truth. To address these limitations,
we could explore incorporating additional sources of infor-
mation, such as sequence or multi-view information, to pro-
vide extra supervision and enhance the accuracy of hand mesh
reconstruction.



Fig. 3. Interaction refinement results. For each triplet, left to right columns correspond to the RGB input, our meshes before
and after interaction refinement. Red boxes highlight the interaction refinement regions.
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Fig. 4. Hand-object shape reconstruction results. For each row, left to right columns correspond to RGB input, template-free
based method [2], template-based method [3], our method and ground truth in camera view.
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Fig. 5. Additional qualitative examples. From left to right: (a) RGB input, (b) 2D key points results, (c) projection of the
reconstructed mesh on the original image, (d) and the multi-view visualization of reconstructed 3D meshes. We show that our
pipeline yields highly accurate and plausible 3D hand meshes.
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Fig. 6. Additional qualitative examples. From left to right: (a) RGB input, (b) 2D key points results, (c) projection of the
reconstructed mesh on the original image, (d) and the multi-view visualization of reconstructed 3D meshes. We show that our
pipeline yields highly accurate and plausible 3D hand meshes.

Fig. 7. Limitation results. For each row, left to right columns correspond to RGB input, our hand mesh and ground truth. We
are limited by heavy object occlusions. Red boxes highlight the non-aligned regions.


