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SUPPLEMENTARY MATERIAL

1. RELATED WORK

1.1. Attention-based Module

Some attention-based modules commonly utilize channel,
spatial, or a combination of several to enhance feature rep-
resentations [1, 2, 3, 4]. These modules aim to selectively
highlight important features while suppressing irrelevant
ones, improving the model’s ability to handle complex visual
patterns. Due to their effectiveness, such modules are fre-
quently integrated into object detection tasks to refine feature
maps and boost detection performance [5, 6, 7, 8, 9, 10].
Other approaches have focused on designing attention-based
necks or heads, which directly participate in feature fusion
or classification and regression tasks [11, 12, 13, 14]. Un-
like methods that enhance feature maps indirectly, these
techniques integrate attention mechanisms into the structural
processes of object detection, aiming to refine task-specific
representations and improve the alignment between features
and detection objectives.

1.2. Hybrid Vision Backbone

Many studies suggest that hybrid vision backbones, which
integrate self-attention mechanisms with convolutional oper-
ations, often outperform architectures based solely on trans-
formers or CNNs in terms of overall performance. Some of
them adopt a strategy of alternating self-attention and con-
volutional operations across different stages [15, 16, 17, 18].
This strategy divides the computational load, allowing con-
volution to focus on capturing local spatial features while
self-attention handles global dependencies. In contrast, other
recent state-of-the-art methods employ a more integrated
approach, tightly combining convolution and self-attention
within each block [19, 20, 21, 22]. This integration enables
the simultaneous extraction of local and global features, en-
hancing feature interaction and alignment.

1.3. Vehicle Detection

Depending on the application context, vehicle detection sys-
tems can be categorized based on the source of their visual
data. Vehicle detection from the driving view, such as that
captured by dashcams or autonomous vehicle cameras, is cru-
cial for advanced driver-assistance systems and autonomous

driving [23, 24, 25]. Vehicle detection in aerial images and
UAV videos constitutes a distinct subdomain within vehicle
detection research [26, 27, 28]. Based on the above discus-
sions, it is clear that vehicle detection from first-person per-
spectives is mainly suited for autonomous driving research
due to its dynamic viewpoints and lack of fixed positions,
which limits its applicability for traffic management and ve-
hicle counting. Aerial images and UAV videos, while provid-
ing a broad and unobstructed view, come with high costs and
generally do not face occlusion challenges. Several previous
studies have also attempted vehicle detection using surveil-
lance footage [29]. Segmentation-based methods have the
problem that background modeling is difficult in crowded sit-
uations or at nighttime [30]. Other approaches use CNN-
based vehicle detectors, but most of them are simply appli-
cations of general object detectors, such as YOLO [31] and
Cascaded R-CNN [32].

2. SUPPLEMENTARY EXPERIMENTS

2.1. Implementation Details and Evaluation Metrics

All the experiments are conducted on an NVIDIA RTX
A6000 GPU. The proposed VDC-YOLO and other detec-
tors are implemented using MMYOLO and MMDetection.
The Python version is 3.10, the CUDA version is 11.8, the
Pytorch version is 2.0.0, and the torchvision version is 0.15.1.
The proposed model is trained with SGD optimizer with the
learning rate of 0.01, the input image size is 640×640 and
the batch size is 12. In addition, we initialize the model with
pretrained weights from the COCO dataset, which provided
a strong baseline for transfer learning. All other models are
evaluated using the same input image size and their default
parameters. In our depthwise convolution, the bottleneck
ratio is 0.25, group is 8.

In our experiments, we report mean Average Precision
(mAP) as the key evaluation metric. Average Precision (AP)
provides a measure of the detection accuracy of model by av-
eraging the precision over multiple recall levels, mAP is the
AP averaged over classes. We present results for both mAP,
which calculates the average precision across IoU thresh-
olds from 0.5 to 0.95, and mAP50, which specifically reports
precision at an IoU threshold of 0.5. Besides, considering dif-
ferent categories and and their varying sizes, we also report



Table 1. Comparison of the performance on MLITcctv
Methods mAP(%) mAP50(%) mAPs(%) mAPm(%) mAPl(%) Flops(G) Parameters(M) FPS(img/s)

Vfnet 29.6 46.9 15.8 28.6 56.9 48.0 32.7 38.0
Retinanet 29.4 42.0 10.8 25.4 57.2 72.0 55.5 56.4
Faster R-CNN 37.7 53.6 13.9 32.8 57.0 82.2 60.4 48.1
Cascade 35.6 47.8 14.8 29.0 47.0 90.9 69.4 38.2

YOLOv5 32.4 50.4 16.1 29.6 48.0 8.0 7.5 94.4
YOLOX 38.1 55.4 19.7 33.0 57.4 13.3 9.2 89.9
YOLOv8 (Baseline) 40.5 57.1 16.8 33.9 61.2 14.3 11.2 106.0
DINO-swin 41.3 55.3 20.7 39.0 60.1 - 47.0 -

TPH-YOLOv5 37.5 49.8 - - - 31.0 27.7 -
HIC-YOLOv5 38.9 53.9 - - - 16.6 18.9 -
Ours 46.9 62.5 22.9 42.8 68.2 17.2 11.9 80.4

Table 2. Comparison of the performance on BitVehicle
Methods mAP(%) Bus(%) Microbus(%) Minivan(%) Suv(%) Sedan(%) Truck(%) FPS(img/s)

Faster R-CNN 91.3 90.6 94.4 90.7 91.3 90.6 90.1 14.7
YOLOv2-vehicle 94.8 97.5 93.8 92.2 94.6 98.5 92.1 26.3
hog+vsm 92.6 91.7 87.7 89.8 97.6 97.6 90.0 -
YOLOv4-AF 83.5 91.6 64.3 65.4 82.3 97.4 96.0 -
Cascade 95.4 97.5 96.4 90.2 96.4 96.7 94.1 23.1
Ours 97.0 98.4 97.3 96.3 96.6 97.4 96.4 55.7

mAPs, mAPm, and mAPl to assess detection performance
across small, medium, and large objects.
mAPs: Object area is less than 322 pixels.
mAPm: Object area ranges between 322 and 962 pixels.
mAPl: Object area exceeds 962 pixels.

In addition to accuracy, we report Flops (FLoating Point
OperationS) and Parameters to assess the computational
complexity of the model. Flops measure the total number
of floating-point operations required for one forward pass
through the model. Parameters include weights and biases
that the model learns during training.

In the i2 Object dataset, the training set contains 6,297
images, while the validation set includes 811 images. Addi-
tionally, we provide a detailed report on the specific number
of categories in the BitVehicle and MLITCCTV datasets in
Table 3 and Table 4.

2.2. Extended Results

We present the results of our proposed method in comparison
to other 10 detectors on MLITcctv in Table 1. For the BitVe-
hicle in Table 2, we additionally report the mAP for each in-
dividual vehicle category. To further validate the effectiveness
of the proposed method, we add GGMix to the resnet-based
model to observe if is effective for resnet in Table 5.

We have discussed the impact of global-guided strategy in
the paper. Additionally, we include an extended experimental
results to report the individual effects of each guidance signal

Table 3. MLITcctv Dataset
MLITcctv Train Valid Test

Images 4,458 864 864
Car 9,736 1,896 1,988

Light Cargo 2,116 384 419
Bus 81 14 11

Cargo 2,889 557 558
Special Vehicle 175 32 36

Motorcycle 253 57 51
Bicycle 260 54 53
Person 511 88 81

Table 4. BitVehicle Dataset
BitVehicle Train Valid Test

Images 8,372 1,478 1,478
Bus 481 77 77

Microbus 734 149 149
Minivan 415 61 61

Suv 1,177 215 215
Sedan 5,037 884 884
Truck 699 124 124



Table 5. The performance of GGMix in Resnet-based model

Methods mAP(%) mAP50(%) mAPs(%)

Faster R-CNN 37.7 53.6 13.9
+GGMix 38.4 53.8 14.5

Cascade 35.6 47.8 12.7
+GGMix 37.3 50.0 13.3

Retinanet 29.4 42.0 10.8
+GGMix 34.9 47.7 17.1

on the model in Table 6.

Table 6. Global-guided ablation study for GGMix

Methods mAP(%) mAP50(%)

w/o global-guided strategy 43.3 59.1
w/o mask 46.5 61.3
w/o offsets 45.9 61.1
w/o channel attention 46.3 61.5
w/o spatial attention 45.9 61.3

ours 46.9 62.5

2.3. Additional Visualization

We provide additional detection result comparisons in Fig.
1. Meanwhile, we present our detection results in chal-
lenging scenarios, including occlusion, scale variation, and
low-resolution conditions, as shown in Fig. 2. These cases
demonstrate the robustness of our method in handling com-
plex real-world scenarios.

2.4. Detailed Discussion

By substituting the specific values (Cin = 128, Cout = 128,
H = W = 40, bottleneck ratio = 0.25, groups = 8), the
Flops of the three methods are calculated as follows. Com-
pared to depthwise separable convolution, the computational
complexity of our method is significantly reduced.
Convolution: Flops = 40·40·128·32 = ·40·40·128·128·9 ≈
23592.96× 104

DSConv: Flops = ·40 · 40 · 128 · (32 +128) = ·40 · 40 · 128 ·
137 ≈ 2805.76× 104

Our method: FLOPs = ·40 · 40 ·
(
128 · 32 + 128 · 32 +

32·128
8

)
= 40 · 40 ·

(
1152+4096+1024

)
= 40 · 40 · 6272 ≈

1003.52× 104

Reduction = 2805.76−1003.52
2805.75 × 100% ≈ 64%
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