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1. SYNTHETIC DATASET GENERTAION

We generate a synthetic collection of image renderings
from garments provided by the DeepFashion-3D dataset
[1], incorporating diverse illumination conditions across
50 randomly sampled viewpoints. Each rendering and
its corresponding camera parameters are saved relative
to the SMPL model’s T-pose orientation and the spe-
cific garment category. The dataset consists of 60,000
high-quality images rendered using Blender’s Cycles ren-
derer. While we primarily generate the dataset to super-
vise the feature regression network, it can also be utilized
for other important tasks related to garment reconstruc-
tion. Figure 3(a) illustrates a scene set up with a ran-
domly generated camera trajectory and illuminations. A
random number of point lights are initialized at arbitrary
locations to introduce illumination diversity. Addition-
ally, as depicted in Figure 3(b), various compositor nodes
are configured to save normal maps, ambient occlusion
maps, alpha maps, diffuse color (albedo) maps, along
with final renderings for each render pass, as shown in
Figure 3(c). The entire dataset generation process re-
quires approximately 24 hours on an NVIDIA RTX 4090
GPU system. It is important to note that for training
the feature line regression network, we utilize only the
diffused renderings or illuminated renderings from this
synthetic dataset.

2. TEMPLATES AND FEATURE LINES

For each garment category in the DeepFashion-3D
dataset [1], we generate garment-specific templates ex-
tracted from a base SMPL model. Figure 4 illustrates
all possible templates derived in this process from the
SMPL human model in standard T-Pose, with Fg out-
lined in black. Since the SMPL model is designed as
a low-poly mesh, the edge loops formed by the feature
lines have a limited number of vertices, which poses
challenges for feature-line regression. To address this,
we randomly upsample all edge loops before inputting
them into the network for training. Specifically, each
feature line is upsampled by a random factor in the

Fig. 1: A quantitative crease-wise comparison of chamfer dis-
tance across different garment groups with P2M + GCN [1].
P2M + Im-Guided STM highlights the impact of incorpo-
rating the proposed crease-wise global translations, and Ours
represents the proposed feature line regression network with
GCN-Guided and Image-Guided spatial translations.

range 8 ≤ Nup ≤ 18.

3. NETWORK MODULES

Based on the garment category in the input image, Im-
age Guided STM module predicts an image-guided spa-
tial translation vector ti ∈ R3 for each feature line fi ∈
Rni×3 within Fg. It applies the corresponding transla-
tion ti to all ni vertices in fi. Utilizing camera param-
eters C, we project the translated points onto the spa-
tial resolution of i-th feature map Xi ∈ Xf and pool
the features for all i, similar to [2]. This process is
represented by the Image-Space Projection and Feature
Pooling blocks. Afterward, we concatenate pooled fea-
tures with vertex locations, resulting in Z, where each
vertex in fi has its corresponding pooled feature of q-
dimensionality, such that zi ∈ Rni×(q+3). These con-
catenated features are passed through multiple Crease



Fig. 2: Deformation of the template mesh Tg using the proposed CRDL-Layer, with the SMPL human body prior and
registered scans as shape prior constraint. We use registered scans with CRDL Layer for illustration purposes, highlighting
the fitting of fine surface details.

Regressor Blocks to produce the final feature lines. We
now describe each module depicted in Figure 1 of main
manuscript in detail.

Garment Classification and Template Selection.
We fine-tune a ResNet-50 network pre-trained on the Im-
ageNet dataset to address a standard classification task.
From our synthetic dataset, we use 90% for training and
achieve a classification accuracy of 99.4% on the vali-
dation set. The classification output is used to select
the appropriate garment template Tg from the template
library, along with the template feature lines fg from
fsmpl. Note that |fsmpl| = Nf = 13, and we select only
relevant feature lines based on Tg to be processed further,
as demonstrated in Figure 1(e) of main manuscript.

Image Guided STM. Since our feature lines Fsmpl are
derived from the posed SMPL model, we focus specif-
ically on learning the translations of each feature line
so that the translated fi first aligns with the respective
boundary in the input image. To accomplish this, we use
spatial transformers [3] configured specifically to learn
translation vectors. Each feature line should naturally
shift in a specific direction guided by the input image I.
Therefore, we define |Fsmpl| = Nf spatial transformer
modules (STMs), denoted as S, where each Si predicts

a global translation for all ni vertices within a given fea-
ture line fi, defined in Equation 1. Consequently, all Nf

crease lines have individual branches dedicated to spatial
translation. After translation, all f trans

i are stacked to-
gether to obtain F trans

g . To facilitate image-guided learn-
ing within the spatial transformers S, we use the output
of the final layer from the feature extractor Xk ∈ Xf to
predict a translation vector ti for each fi. We first pro-
cess Xk through a couple of convolutional layers and then
flatten the features to predict ti employing Linear layers,
as illustrated in Figure 5(a). It is important to highlight
that in Figure 5(a), we only predict translations for the
feature lines that are part of Fg, deduced based on se-
lected template Tg. Following this step, the translated
feature lines shift toward the approximate boundaries
reflected in the input image. For example, the hemline
in Figure 1(f) of the main manuscript demonstrates how
this adjustment would greatly aid the projection and fea-
ture pooling stage, playing a critical role in enhancing
prediction accuracy.

f trans
i = Si(Xk) + fi ∀fi ∈ Fg (1)

Projection and Feature Pooling. Let the projection
be defined as Π : RN×3 → RHi×Wi , which maps every



Fig. 3: For each registered garment scan from [1], we generate a random camera trajectory around the garment with ran-
domized illumination (a) in Blender software. We sample 50 points along this trajectory, ensuring the camera always points
at the object’s center and renders the scene. The compositor setup for each render pass is shown in (b), and the resulting
images are displayed in (c), with each column showcasing the final render, ambient-occlusion map, albedo map, and normal
map, respectively.

Fig. 4: Templates derived from SMPL human models in a T-pose: (a) Long Sleeve Dress, (b) Short Sleeve Dress, (c) No
Sleeve Dress, (d) Long Sleeve Upper, (e) Short Sleeve Upper, (f) No Sleeve Upper, (g) Long Pants, (h) Short Pants, and (i)
Skirts. The initial crease lines, Fg, are indicated on each template, Tg, by black lines.

vertex x ∈ Fg on the image space of i-th feature map
Xi ∈ X , based on camera parameters C. We sample the
features from Xi for all feature maps in X concatenate all
sampled features with their respective vertex locations,
and represent the result as Z as shown in Equation 2.

Z =
[

x,
⋃

Xi∈X
ϕ(Xi, Π(x, C))

]
(2)

Here,
⋃

denotes concatenation operation, and ϕ repre-
sents the grid sampling of features from the feature space
of Xi.
GCN Guided STM. The architecture of the GCN-
guided STM follows a similar structure to that of the
Image-guided STM, with the key difference being that
we predict vertex-wise translations for all vertex points
in Pg. Here, Pg is a high dimensional feature vector
of all vertices in Z obtained after a few graph convolu-
tion operations. In contrast to Xf , Zh is a node-wise
feature map. To accommodate this, we replace the con-
volutional layers in the Image-guided STM with linear
layers, as shown in Figure 5(b). We observe that apply-

ing per-vertex translations, predicted by the proposed
GCN-guided STM on Pg, enables the vertices of feature
lines to move more freely, allowing them to capture high-
frequency variations along the crease.
Crease Regression Block. The Crease Regression
Block (CRB) takes the pooled features Z as input and
applies graph convolutions employing multiple GResNet
Block, leveraging the adjacency information of the fea-
ture lines fi ∈ Fg for feature aggregation. We denote
the output of the last GResNet block as Zh, which is
then fed into the GCN-guided STM. Additionally, it is
concatenated with the pooled features and passed to the
subsequent CRB block. Each CRB block outputs P trans

g ,
on which we apply loss functions to supervise the train-
ing of the feature line regression network. The number
of CRB blocks significantly affects the convergence rate
and final accuracy.

3.1. Loss Functions

We impose losses on the translated outputs from the
STMs, specifically on F trans

g and P trans
g from each



Fig. 5: The architecture of the Image-Guided STM and
GCN-Guided STM modules: We use 13 crease-wise STM
modules, one for each feature in |Fsmpl|, where each mod-
ule learns 3 translation parameters. The Image-Guided GCN
predicts a global translation for all vertices within a feature
line fi ∈ Fg. In contrast, the GCN-guided STM predicts
translations independently for each vertex. This allows for
more flexible vertex movement to capture fine boundary de-
tails as reflected in the input image I.
Legend: 2D Convolution Layer, Linear Layer and ReLU
activation. S and + indicate stack and addition operations.

Fig. 6: The result of training with the proposed circularity
loss is shown in (b) and (d). Since chamfer and edge reg-
ularization losses do not penalize loop formation by design,
the network tends to converge to outputs that produce a spi-
raling effect, as seen in (a) and (b), which is undesirable for
handle-based mesh deformation.

Crease Regressor Block. Let there be Ny CRB blocks.
We define the set of all predictions as Xg such that Xi

g

represents predictions including F trans
g and P trans

g of all
Ny CRB blocks. We minimize the Chamfer distance be-
tween the predicted and ground-truth vertex locations
of the feature lines. Additionally, we apply an edge
regularization term to ensure smoothness and promote
uniform edge lengths, as shown in Equation 3.

Lce =
Ny+1∑
i=0

Lchamfer(Fg, Xi
g) + λ

Ny+1∑
i=0

Ledge(Xi
g) (3)

In the initial phase of training, when predicted vertices
are dispersed, the Chamfer loss and edge regularization
terms in Lce alone struggle to prevent spiraling in the
output, as they lack mechanisms to explicitly penalize
loop formations. Consequently, with these losses, output
tends to get stuck in spiraled outputs, an effect we term
the spiraling effect, as depicted in Figure 6(a) and 6(c).

Circularity Loss. As template deformation relies on
the predicted positions of feature lines, the spiraling ef-
fect severely compromises the accuracy of the deforma-
tion. We introduce a simple circularity loss term along-
side Lce to address this, effectively reducing the spiraling
issue. Consider a predicted feature line forming an edge
loop, denoted as fi ∈ Xg, with ni vertices, represented
by fi = (vi, ei), where vi contains vertex positions and
ei contains edge connectivity information. Let c be the
centroid of the loop fi. We calculate angle spacings, θk,
between consecutive vertices along the edges with respect
to centroid c, in a clockwise direction. To encourage uni-
form spacing, we impose a penalty if the angles deviate
from the ideal equal spacing of 2π

ni
radians. The circular-

ity loss for a feature line fi is formulated as in Equation
4. Finally, we compute total loss for all feature lines
fi ∈ Xg as Lcirc =

∑
i Li

circ. Applying this loss function
during training leads to the formation of a single loop in
the output, as shown in Figure 6(b) and 6(d).

Li
circ = 1

ni

∑
k

(θk − 2π

ni
) + var(θk) (4)

L = wceLce + wcircLcirc (5)

3.2. Implementation Details.

In our implementation, we use Ny = 3 number of CRB
blocks, each containing Nx = 6 GResNet Blocks. The
edge regularization weight λ = 0.2 in Equation 3, and
wce = 5 in Equation 4. We apply the circularity loss with
a weight wcirc = 1 for the first five epochs, then reduce
wcirc to 0 once the feature lines have converged to form a
stable single closed loop. During these initial epochs, the
circularity loss encourages the vertices to organize into
a continuous loop. After this convergence, removing the
loss allows for more flexible vertex movement to capture
finer boundary details. In total, we train for 30 epochs
on a machine with an NVIDIA RTX 4090 GPU.

4. AS-RIGID-AS-POSSIBLE DEFORMATION

We propose a differentiable CRDL-Layer that minimizes
energy E given in Equation 6. Unlike [5], all vertices
vT ∈ Tg are learnable parameters of CRDL Layer, with
deformation driven by handle vertices, which correspond
to the regressed feature line vertices v ∈ Fg. As dis-
cussed in the main manuscript, this process is further
constrained by additional losses, such as Lfit and Lsil.

E =
∑

i

∑
j∈N (i)

wij ||(p′
i − p′

j) − Ri(pi − pj)||2 (6)

In this section, we outline the approximation of Ri ensur-
ing that the deformation of each i-th cell in the template



Fig. 7: Simulation results obtained within Maya software using AMASS [4] sequences, initialized with the templates shown
in (a) and (b). The extracted garment geometry for the frames in sequences is presented in (c) and (d).

Fig. 8: Addition of a collar accessory to the predefined neck
seam on DARTs and corresponding simulation results.

mesh Tg remains as rigid as possible, following [5]. Let
Ci be a cell representing all the triangular faces incident
on a vertex vi ∈ Tg. The corresponding cell in the de-
formed template mesh at a given iteration is denoted by
C′

i. If the deformation C → C′ is rigid, then there exists
a rotation matrix Ri satisfying Equation 7. We define
a covariance matrix Si for vertex vi to capture the lo-
cal distribution and relationships among its neighboring
vertices, as defined in Equation 8.

p′
i − p′

j = Ri(pi − pj), ∀ j ∈ N (i) (7)

Si =
∑

j∈N (i)

wij(pi − pj)(p′
i − p′

j)T (8)

The rotation matrix Ri in Equation 6 can be derived by
applying singular value decomposition to the covariance

matrix Si = UiΣiV
T

i , yielding Ri = ViU
T
i . To ensure

a valid rotation matrix, we additionally flip the sign of
the column in Ui corresponding to the smallest singular
value, ensuring that det(Ri) > 0.

5. QUANTITATIVE EVALUATION

We expand on the results presented in the main manuscript,
where garment categories were grouped into three
classes: upper, consisting of long/short/no sleeve
dresses and upper garments, lower, consisting of long/short
pants, and skirts. Here, we provide a detailed break-
down of the chamfer distance across individual garment
categories, analyzed crease-wise, as shown in Figure 1.

5.1. Ablation Studies

Depth Ablation. As shown in Table 1, we run several
experiments by varying the number of GResNet blocks
within the CRB blocks and the total number of CRB
blocks. All networks are trained for 15 epochs to ensure
unbiased comparisons, with wcirc = 0 applied after five
epochs, as outlined in the main paper. The inclusion of
CRB blocks incorporates perceptual feature pooling [2],
with the loss functions applied at the output of each Ny

CRB-Blocks. Notably, even when the number of graph
convolutions facilitated by the GResNet blocks remains
the same across different Nx, Ny configurations, we ob-
serve an improvement due to the feature pooling of newly



Model Nx Ny CD Model Nx Ny CD

Without
GCN-Guided

STM

3 1 0.673

With
GCN-Guided

STM

3 1 0.617
6 1 0.648 6 1 0.546
9 1 0.581 9 1 0.496
3 2 0.526 3 2 0.393
6 2 0.402 6 2 0.375
9 2 0.393 9 2 0.367
3 3 0.417 3 3 0.368
6 3 0.382 6 3 0.346
9 3 0.383 9 3 0.342

Table 1: Ablation Study on Number of GResNet-Blocks
(Nx) and Number of CRB Blocks (Ny) in the proposed fea-
ture line regression network. We compare models trained
with and without GCN-guided spatial transformers, observ-
ing improved performance when applying per-vertex trans-
lations predicted by GCN-Guided STM. Here, CD refers to
chamfer distance across all categories of garments in our val-
idation split.

predicted points at the outputs of each CRB block. In-
cluding GCN-guided STM-based per-vertex translations
in each CRB block allows for more precise vertex move-
ments, enabling the capture of finer crease details and
further enhancing regression accuracy. Based on the
model complexity and accuracy results from Table 1, we
choose the values of Nx = 6 and Ny = 3 for the proposed
feature line regressor network.
On Spatial Rotations. Our network utilizes spatial
transformers [3] in two stages: first, guided by the im-
age to align feature lines with those in the input im-
ages globally, and second, guided by pooled per-vertex
GCN features for finer adjustments. Since we extract
templates from a posed SMPL human model M(β, θ),
the feature lines are already rotationally aligned with
respect to the image. Furthermore, when training the
Image-Guided STM with learnable parameters for the
rotation matrix R ∈ R3×3, the matrix R gradually con-
verges to an approximate identity matrix. Including R as
a learnable parameter in STM prolongs the convergence
process while contributing only to a near-identity rota-
tion matrix. Therefore, we train the STM exclusively
for translations. In the second stage, we predict per-
vertex translations. Since rotating a single vertex lacks
a meaningful reference point, applying only translations
is sufficient.

5.2. Qualitative Results

Figure 2 showcases additional qualitative results across
various garment categories, highlighting the deforma-
tions achieved using the proposed CRDL Layer. In
Figure 2(a), we employ fitting loss Lfit with SMPL hu-
man body as the prior shape, while in Figure 2(b), we
use registered scan mesh as prior for fitting. We demon-
strate the use of the CRDL Layer on registered scans
for illustration purposes, showing its potential to be

seamlessly integrated with methods that learn implicit
representations, such as [6, 7], similar to that of [1, 8].

6. DARTS SIMULATION

Starting with the deformed template on the leftmost
side, Figure 7 illustrates clothing simulation across dif-
ferent garment categories and motion sequences from
AMASS [4]. We developed DARTs using templates ex-
tracted from the SMPL human body model, incorporat-
ing predefined seams and spring constraints to stream-
line the simulation process. Figure 8 demonstrates the
addition of a collar to the template mesh with predefined
seams on DARTs, along with the corresponding simula-
tion results.
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